ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cell Rep.
2018 Jan 02
Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ.
PMID: 29298427 | DOI: 10.1016/j.celrep.2017.12.039
Aging brains undergo cognitive decline, associated with decreased neuronal synapse number and function and altered metabolism. Astrocytes regulate neuronal synapse formation and function in development and adulthood, but whether these properties change during aging, contributing to neuronal dysfunction, is unknown. We addressed this by generating aged and adult astrocyte transcriptomes from multiple mouse brain regions. These data provide a comprehensive RNA-seq database of adult and aged astrocyte gene expression, available online as a resource. We identify astrocyte genes altered by aging across brain regions and regionally unique aging changes. Aging astrocytes show minimal alteration of homeostatic and neurotransmission-regulating genes. However, aging astrocytes upregulate genes that eliminate synapses and partially resemble reactive astrocytes. We further identified heterogeneous expression of synapse-regulating genes between astrocytes from different cortical regions. We find that alterations to astrocytes in aging create an environment permissive to synapse elimination and neuronal damage, potentially contributing to aging-associated cognitive decline.
Cell Stem Cell.
2018 Jan 10
Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, Ohta Y, Matano M, Nanki K, Kawasaki K, Takahashi S, Sugimoto S, Iwasaki E, Takagi J, Itoi T, Kitago M, Kitagawa Y, Kanai T, Sato T.
PMID: 29337182 | DOI: 10.1016/j.stem.2017.12.009
Despite recent efforts to dissect the inter-tumor heterogeneity of pancreatic ductal adenocarcinoma (PDAC) by determining prognosis-predictive gene expression signatures for specific subtypes, their functional differences remain elusive. Here, we established a pancreatic tumor organoid library encompassing 39 patient-derived PDACs and identified 3 functional subtypes based on their stem cell niche factor dependencies on Wnt and R-spondin. A Wnt-non-producing subtype required Wnt from cancer-associated fibroblasts, whereas a Wnt-producing subtype autonomously secreted Wnt ligands and an R-spondin-independent subtype grew in the absence of Wnt and R-spondin. Transcriptome analysis of PDAC organoids revealed gene-expression signatures that associated Wnt niche subtypes with GATA6-dependent gene expression subtypes, which were functionally supported by genetic perturbation of GATA6. Furthermore, CRISPR-Cas9-based genome editing of PDAC driver genes (KRAS, CDKN2A, SMAD4, and TP53) demonstrated non-genetic acquisition of Wnt niche independence during pancreas tumorigenesis. Collectively, our results reveal functional heterogeneity of Wnt niche independency in PDAC that is non-genetically formed through tumor progression.
EMBO J.
2018 Jul 23
Maglic D, Schlegelmilch K, Dost AF, Panero R, Dill M, Calogero RA, Camargo FD.
PMID: 30037824 | DOI: 10.15252/embj.201798642
The mammalian Hippo signaling pathway, through its effectors YAP and TAZ, coerces epithelial progenitor cell expansion for appropriate tissue development or regeneration upon damage. Its ability to drive rapid tissue growth explains why many oncogenic events frequently exploit this pathway to promote cancer phenotypes. Indeed, several tumor types including basal cell carcinoma (BCC) show genetic aberrations in the Hippo (or YAP/TAZ) regulators. Here, we uncover that while YAP is dispensable for homeostatic epidermal regeneration, it is required for BCC development. Our clonal analyses further demonstrate that the few emerging Yap-null dysplasia have lower fitness and thus are diminished as they progress to invasive BCC Mechanistically, YAP depletion in BCC tumors leads to effective impairment of the JNK-JUN signaling, a well-established tumor-driving cascade. Importantly, in this context, YAP does not influence canonical Wnt or Hedgehog signaling. Overall, we reveal Hippo signaling as an independent promoter of BCC pathogenesis and thereby a viable target for drug-resistant BCC.
Neuron. 2018 Sep 21.
2018 Oct 02
Condomitti G, Wierda KD, Schroeder A, Rubio SE, Vennekens KM, Orlandi C, Martemyanov KA, Gounko NV, Savas JN, de Wit J.
PMID: 30290982 | DOI: 10.1016/j.neuron.2018.08.038
Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.
bioRxiv : the preprint server for biology
2023 Jan 24
Bao, L;Fu, L;Su, Y;Chen, Z;Peng, Z;Sun, L;Gonzalez, FJ;Wu, C;Zhang, H;Shi, B;Shi, YB;
PMID: 36789439 | DOI: 10.1101/2023.01.24.524966
Cell stem cell
2022 Jun 15
Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007
J Exp Clin Cancer Res.
2017 Jan 23
Bozzi F, Mogavero A, Varinelli L, Belfiore A, Manenti G, Caccia C, Volpi CC, Beznoussenko GV, Milione M, Leoni V, Gloghini A, Mironov AA, Leo E, Pilotti S, Pierotti MA, Bongarzone I, Gariboldi M.
PMID: 28114961 | DOI: 10.1186/s13046-016-0475-z
Cell reports
2022 Dec 13
Huang, XT;Li, T;Li, T;Xing, S;Tian, JZ;Ding, YF;Cai, SL;Yang, YS;Wood, C;Yang, JS;Yang, WJ;
PMID: 36516755 | DOI: 10.1016/j.celrep.2022.111796
Cell reports
2022 Jul 12
Zhao, L;Song, W;Chen, YG;
PMID: 35830795 | DOI: 10.1016/j.celrep.2022.111053
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
2022 Jan 01
Vaughan-Shaw, PG;Blackmur, JP;Grimes, G;Ooi, LY;Ochocka-Fox, AM;Dunbar, K;von Kriegsheim, A;Rajasekaran, V;Timofeeva, M;Walker, M;Svinti, V;Din, FVN;Farrington, SM;Dunlop, MG;
PMID: 34918389 | DOI: 10.1096/fj.202101430RR
Cell Syst.
2016 Sep 14
Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M.
PMID: 27641957 | DOI: 10.1016/j.cels.2016.08.010
The murine epidermis with its hair follicles represents an invaluable model system for tissue regeneration and stem cell research. Here we used single-cell RNA-sequencing to reveal how cellular heterogeneity of murine telogen epidermis is tuned at the transcriptional level. Unbiased clustering of 1,422 single-cell transcriptomes revealed 25 distinct populations of interfollicular and follicular epidermal cells. Our data allowed the reconstruction of gene expression programs during epidermal differentiation and along the proximal-distal axis of the hair follicle at unprecedented resolution. Moreover, transcriptional heterogeneity of the epidermis can essentially be explained along these two axes, and we show that heterogeneity in stem cell compartments generally reflects this model: stem cell populations are segregated by spatial signatures but share a common basal-epidermal gene module. This study provides an unbiased and systematic view of transcriptional organization of adult epidermis and highlights how cellular heterogeneity can be orchestrated in vivo to assure tissue homeostasis.
Nat Commun.
2018 Mar 19
Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ.
PMID: 29556067 | DOI: 10.1038/s41467-018-03426-2
Many epithelial stem cell populations follow a pattern of stochastic stem cell divisions called 'neutral drift'. It is hypothesised that neutral competition between stem cells protects against the acquisition of deleterious mutations. Here we use a Porcupine inhibitor to reduce Wnt secretion at a dose where intestinal homoeostasis is maintained despite a reduction of Lgr5+ stem cells. Functionally, there is a marked acceleration in monoclonal conversion, so that crypts become rapidly derived from a single stem cell. Stem cells located further from the base are lost and the pool of competing stem cells is reduced. We tested whether this loss of stem cell competition would modify tumorigenesis. Reduction of Wnt ligand secretion accelerates fixation of Apc-deficient cells within the crypt leading to accelerated tumorigenesis. Therefore, ligand-based Wnt signalling influences the number of stem cells, fixation speed of Apc mutations and the speed and likelihood of adenoma formation.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com