Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (10)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • (-) Remove ETV1 filter ETV1 (7)
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (10)

Category

  • Publications (10) Apply Publications filter
Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India

Prostate. 2015 Mar 23.

Ateeq B, Kunju LP, Carskadon SL, Pandey SK, Singh G, Pradeep I, Tandon V, Singhai A, Goel A, Amit S, Agarwal A, Dinda AK, Seth A, Tsodikov A, Chinnaiyan AM, Palanisamy N.
PMID: 25809148 | DOI: 10.1002/pros.22989.

BACKGROUND: Molecular stratification of prostate cancer (PCa) based on genetic aberrations including ETS or RAF gene-rearrangements, PTEN deletion, and SPINK1 over-expression show clear prognostic and diagnostic utility. Gene rearrangements involving ETS transcription factors are frequent pathogenetic somatic events observed in PCa. Incidence of ETS rearrangements in Caucasian PCa patients has been reported, however, occurrence in Indian population is largely unknown. The aim of this study was to determine the prevalence of the ETS and RAF kinase gene rearrangements, SPINK1 over-expression, and PTEN deletion in this cohort. METHODS: In this multi-center study, formalin-fixed paraffin embedded (FFPE) PCa specimens (n = 121) were procured from four major medical institutions in India. The tissues were sectioned and molecular profiling was done using immunohistochemistry (IHC), RNA in situ hybridization (RNA-ISH) and/or fluorescence in situ hybridization (FISH). RESULTS: ERG over-expression was detected in 48.9% (46/94) PCa specimens by IHC, which was confirmed in a subset of cases by FISH. Among other ETS family members, while ETV1 transcript was detected in one case by RNA-ISH, no alteration in ETV4 was observed. SPINK1 over-expression was observed in 12.5% (12/96) and PTEN deletion in 21.52% (17/79) of the total PCa cases. Interestingly, PTEN deletion was found in 30% of the ERG-positive cases (P = 0.017) but in only one case with SPINK1 over-expression (P = 0.67). BRAF and RAF1 gene rearrangements were detected in ∼1% and ∼4.5% of the PCa cases, respectively. CONCLUSIONS: This is the first report on comprehensive molecular profiling of the major spectrum of the causal aberrations in Indian men with PCa. Our findings suggest that ETS gene rearrangement and SPINK1 over-expression patterns in North Indian population largely resembled those observed in Caucasian population but differed from Japanese and Chinese PCa patients. The molecular profiling data presented in this study could help in clinical decision-making for the pursuit of surgery, diagnosis, and in selection of therapeutic intervention. Prostate © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.
Novel RNA Hybridization Method for the In Situ Detection of ETV1, ETV4, and ETV5 Gene Fusions in Prostate Cancer.

Appl Immunohistochem Mol Morphol. 2014 Sep;22(8):e32-40.

Kunju LP, Carskadon S, Siddiqui J, Tomlins SA, Chinnaiyan AM, Palanisamy N.
PMID: 25203299 | DOI: 10.1097/PAI.0000000000000095.

The genetic basis of 50% to 60% of prostate cancer (PCa) is attributable to rearrangements in E26 transformation-specific (ETS) (ERG, ETV1, ETV4, and ETV5), BRAF, and RAF1 genes and overexpression of SPINK1. The development and validation of reliable detection methods are warranted to classify various molecular subtypes of PCa for diagnostic and prognostic purposes. ETS gene rearrangements are typically detected by fluorescence in situ hybridization and reverse-transcription polymerase chain reaction methods. Recently, monoclonal antibodies against ERG have been developed that detect the truncated ERG protein in immunohistochemical assays where staining levels are strongly correlated with ERG rearrangement status by fluorescence in situ hybridization. However, specific antibodies for ETV1, ETV4, and ETV5 are unavailable, challenging their clinical use. We developed a novel RNA in situ hybridization-based assay for the in situ detection of ETV1, ETV4, and ETV5 in formalin-fixed paraffin-embedded tissues from prostate needle biopsies, prostatectomy, and metastatic PCa specimens using RNA probes. Further, with combined RNA in situ hybridization and immunohistochemistry we identified a rare subset of PCa with dual ETS gene rearrangements in collisions of independent tumor foci. The high specificity and sensitivity of RNA in situ hybridization provides an alternate method enabling bright-field in situ detection of ETS gene aberrations in routine clinically available PCa specimens.
ETV1 mRNA is specifically expressed in gastrointestinal stromal tumors

Virchows Arch. 2015 Aug 5.

Jang BG, Lee HE, Kim WH.
PMID: 26243012

Gastrointestinal stromal tumors (GISTs) develop from interstitial cells of Cajal (ICCs) mainly by activating mutations in the KIT or PDGFRA genes. Immunohistochemical analysis for KIT, DOG1, and PKC-θ is used for the diagnosis of GIST. Recently, ETV1 has been shown to be a lineage survival factor for ICCs and required for tumorigenesis of GIST. We investigated the diagnostic value of ETV1expression in GIST. On fresh-frozen tissue samples, RT-PCR analysis showed that ETV1 as well as KIT, DOG1, and PKC-θ are highly expressed in GISTs. On tissue microarrays containing 407 GISTs and 120 non-GIST mesenchymal tumors of GI tract, we performed RNA in situ hybridization (ISH) for ETV1 together with immunohistochemical analysis for KIT, DOG1, PKC-θ, CD133, and CD44. Overall, 387 (95 %) of GISTs were positive for ETV1, while KIT and DOG1 were positive in 381 (94 %) and 392 (96 %) cases, respectively, showing nearly identical overall sensitivity of ETV1, KIT, and DOG1 for GISTs. In addition, ETV1 expression was positively correlated with that of KIT. Notably, ETV1 was positive in 15 of 26 (58 %) KIT-negative GISTs and even positive in 2 cases of GIST negative for KIT and DOG1, whereas only 6 (5 %) non-GIST mesenchymal GI tumors expressed ETV1. We conclude that ETV1 is specifically expressed in the majority of GISTs, even in some KIT-negative cases, suggesting that ETV1 may be useful as ancillary marker in diagnostically difficult select cases of GIST.
Albumin In Situ Hybridization Can Be Positive in Adenocarcinomas and Other Tumors From Diverse Sites

Am J Clin Pathol

2019 May 20

Nasir A, Lehrke HD, Mounajjed T, Said S, Zhang L, Yasir S, Shah SS, Chandan VS, Smyrk TC, Moreira RK, Boland Froemming JM, Herrera Hernandez LP, Wu TT, Graham RP.
PMID: 31107526 | DOI: 10.1093/ajcp/aqz032

OBJECTIVES:

Albumin messenger RNA (mRNA) expression is a marker of hepatocellular differentiation. Most published data are from review of tissue microarrays, and albumin in situ hybridization (ISH) expression across several tumor types is incompletely characterized.

METHODS:

Sections from 221 tumors were evaluated for albumin mRNA. Immunohistochemistry was used to confirm diagnoses. Albumin ISH was performed according to manufacturer-provided instructions. Fifty-nine cases were evaluated with both commercial ISH assays.

RESULTS:

Albumin mRNA was detected in all hepatocellular carcinomas (HCCs) and 81% of intrahepatic cholangiocarcinomas. Lung (20%), gallbladder (39%), hepatoid pancreatic (n = 1 of 1) adenocarcinoma, breast invasive ductal carcinoma (18%), yolk sac tumor (25%), and acinar cell carcinoma (29%) showed expression. Both assays were concordant in 93% of cases.

CONCLUSIONS:

Albumin ISH was expressed in all HCCs studied. It was also positive in intrahepatic cholangiocarcinoma and patchy positive in gallbladder adenocarcinoma and a subset of other neoplasms, which can be a potential pitfall

Coadaptation fostered by the SLIT2-ROBO1 axis facilitates liver metastasis of pancreatic ductal adenocarcinoma

Nature communications

2023 Feb 15

Li, Q;Zhang, XX;Hu, LP;Ni, B;Li, DX;Wang, X;Jiang, SH;Li, H;Yang, MW;Jiang, YS;Xu, CJ;Zhang, XL;Zhang, YL;Huang, PQ;Yang, Q;Zhou, Y;Gu, JR;Xiao, GG;Sun, YW;Li, J;Zhang, ZG;
PMID: 36792623 | DOI: 10.1038/s41467-023-36521-0

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.
The Utility of ETV1, ETV4, and ETV5 RNA In Situ Hybridization in the Diagnosis of CIC-DUX4 Sarcomas

Histopathology.

2016 Oct 27

Smith SC, Palanisamy N, Martin E, Almenara J, McHugh JB, Choi EK, Lucas DR, Betz BL, Thomas D, Patel RM.
PMID: 27790742 | DOI: 10.1111/his.13112

Abstract

AIMS:

A recently characterized group of undifferentiated small round cell sarcomas harbours fusions of the genes CIC and DUX4. Studies report a distinctive gene expression profile for these sarcomas, including expression of E26 transformation specific (ETS)-family protooncogenic transcription factors ETV1, ETV4, and ETV5. To test the utility of an ancillary diagnostic technique for these tumors, we evaluated chromogenic RNA in situ hybridization assays for ETV1, ETV4, and ETV5, as diagnostic adjuncts for this emerging group of highly malignant sarcomas.

METHODS AND RESULTS:

We tested 6 confirmed CIC-DUX4 sarcomas and 105 lesions in the differential, including 48 Ewing sarcomas for expression of ETV1, ETV4, and ETV5, scoring expression utilizing a previously validated scale. ETV1 and ETV4 were positive in 5/6 cases, while ETV5 was positive in 6/6. No Ewing sarcoma or other sarcoma tested, showed co-expression of these transcripts, while one ETV1, ETV4, ETV5 positive previously unclassified round cell sarcoma, was identified as harboring a CIC rearrangement by break-apart FISH.

CONCLUSION:

We identified overexpression of ETV1, ETV4, and ETV5 transcripts in situ in CIC-DUX4 sarcomas using a robust assay in routine archival sections. One previously unclassified round cell sarcoma showed ETV1/4/5 positivity, and was proven to harbor a CIC rearrangement by break-apart FISH. The sensitivity and specificity observed with our in situ hybridization assay implies potential utility as an ancillary diagnostic technique, particularly when faced with limited biopsy samples. 

Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression.

Horm Cancer. 2015 Jan 29.

Higgins J, Brogley M, Palanisamy N, Mehra R, Ittmann MM, Li JZ, Tomlins SA, Robins DM.
PMID: 25631336

To examine the impact of common somatic mutations in prostate cancer (PCa) on androgen receptor (AR) signaling, mouse models were designed to perturb sequentially the AR, ETV1, and PTEN pathways. Mice with "humanized" AR (hAR) alleles that modified AR transcriptional strength by varying polyglutamine tract (Q-tract) length were crossed with mice expressing a prostate-specific, AR-responsive ETV1 transgene (ETV1 Tg ). While hAR allele did not grossly affect ETV1-induced neoplasia, ETV1 strongly antagonized global AR regulation and repressed critical androgen-induced differentiation and tumor suppressor genes, such as Nkx3-1 and Hoxb13. When Pten was varied to determine its impact on disease progression, mice lacking one Pten allele (Pten +/- ) developed more frequent prostatic intraepithelial neoplasia (PIN). Yet, only those with the ETV1 transgene progressed to invasive adenocarcinoma. Furthermore, progression was more frequent with the short Q-tract (stronger) AR, suggesting that the AR, ETV1, and PTEN pathways cooperate in aggressive disease. On the Pten +/- background, ETV1 had markedly less effect on AR target genes. However, a strong inflammatory gene expression signature, notably upregulation of Cxcl16, was induced by ETV1. Comparison of mouse and human patient data stratified by the presence of E26 transformation-specific ETS fusion genes highlighted additional factors, some not previously associated with prostate cancer but for which targeted therapies are in development for other diseases. In sum, concerted use of these mouse models illuminates the complex interplay of AR, ETV1, and PTEN pathways in pre-cancerous neoplasia and early tumorigenesis, disease stages difficult to analyze in man.
Transcriptomes of prostate cancer with TMPRSS2:ERG and other ETS fusions

Molecular cancer research : MCR

2022 Sep 20

Stopsack, KH;Su, XA;Vaselkiv, JB;Graff, RE;Ebot, EM;Pettersson, A;Lis, RT;Fiorentino, M;Loda, M;Penney, KL;Lotan, TL;Mucci, LA;
PMID: 36125519 | DOI: 10.1158/1541-7786.MCR-22-0446

The most common somatic event in primary prostate cancer is a fusion between the androgen-related TMPRSS2 gene and the ERG oncogene. Tumors with these fusions, which occur early in carcinogenesis, have a distinctive etiology. A smaller subset of other tumors harbor fusions between TMPRSS2 and members of the ETS transcription factor family other than ERG. To assess the genomic similarity of tumors with non-ERG ETS fusions and those with fusions involving ERG, this study derived a transcriptomic signature of non-ERG ETS fusions and assessed this signature and ERG-related gene expression in 1,050 men with primary prostate cancer from three independent population-based and hospital-based studies. While non-ERG ETS fusions involving ETV1, ETV4, ETV5, or FLI1 were individually rare, they jointly accounted for one in seven prostate tumors. Genes differentially regulated between non-ERG ETS tumors and tumors without ETS fusions showed similar differential expression when ERG tumors and tumors without ETS fusions were compared (differences explained: R2 69-77%), including ETS-related androgen receptor (AR) target genes. Differences appeared to result from similarities among ETS tumors rather than similarities among non-ETS tumors. Gene sets associated with ERG fusions were consistent with gene sets associated with non-ERG ETS fusions, including fatty acid and amino acid metabolism, an observation that was robust across cohorts. Implications: Considering ETS fusions jointly may be useful for etiologic studies on prostate cancer, given that the transcriptome is profoundly impacted by ERG and non-ERG ETS fusions in a largely similar fashion, most notably genes regulating metabolic pathways.
"Detection of Albumin Expression by RNA In Situ Hybridization Is a Sensitive and Specific Method for Identification of Hepatocellular Carcinomas and Intrahepatic Cholangiocarcinomas. "

Am J Clin Pathol.

2018 May 09

Lin F, Shi J, Wang HL, Ma XJ, Monroe R, Luo Y, Chen Z, Liu H.
PMID: 29746696 | DOI: 10.1093/ajcp/aqy030

Abstract

OBJECTIVES:

Inconsistent data on detection of albumin expression by ribonucleic acid (RNA) in situ hybridization have been reported. We investigated the utility of RNAscope (Advanced Cell Diagnostics, Hayward, CA) in detection of albumin in hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (ICCs), and carcinomas from various organs using manual and automated staining.

METHODS:

RNAscope for albumin detection was performed on 482 cases on tissue microarray sections and on 22 cases of ICC, including 14 surgical resection and eight core biopsy specimens.

RESULTS:

Thirty-six of 37 (97%) HCCs had detectable mRNA, whereas all non-HCC and non-ICC cases, except one lung adenocarcinoma, were negative for albumin. Fourteen of 22 ICCs (64%) were positive for albumin.

CONCLUSIONS:

RNAscope for albumin is highly sensitive and specific for identifying HCCs and is highly specific and moderately sensitive for detection of ICCs; however, rare carcinomas (non-HCC, non-ICC, and those with no hepatoid histomorphology) can also have aberrant expression of albumin.

Comprehensive Determination of Prostate Tumor ETS Gene Status in Clinical Samples Using the CLIA Decipher Assay

The Journal of Molecular Diagnostics

2017 Mar 21

Torres A, Alshalalfa M, Tomlins SA, Erho N, Gibb EA, Chelliserry J, Lim L, Lam LLC, Faraj SF, Bezerra SM, Davicioni E, Yousefi K, Ross AE, Netto GJ, Schaeffer EM, Lotan TL.
PMID: - | DOI: 10.1016/j.jmoldx.2017.01.007

ETS family gene fusions are common in prostate cancer and molecularly define a tumor subset. ERG is the most commonly rearranged member, leading to its overexpression, followed by ETV1, ETV4, and ETV5, and these alterations are generally mutually exclusive. We validated the Decipher prostate cancer assay to detect ETS alterations in a Clinical Laboratory Improvement Amendments–accredited laboratory. Benchmarking against ERG immunohistochemistry and ETV1/4/5 RNA in situ hybridization, we examined the accuracy, precision, and reproducibility of gene expression ETS models using formalin-fixed, paraffin-embedded samples. The m-ERG model achieved an area under curve of 95%, with 93% sensitivity and 98% specificity to predict ERG immunohistochemistry status. The m-ETV1, -ETV4, and -ETV5 models achieved areas under curve of 98%, 88%, and 99%, respectively. The models had 100% robustness for ETS status, and scores were highly correlated across sample replicates. Assay predicted 41.5% of a prospective radical prostatectomy cohort (n = 4036) to be ERG+, 6.3% ETV1+, 1% ETV4+, and 0.4% ETV5+. Of prostate tumor biopsy samples (n = 509), 41.2% were ERG+, 8.6% ETV1+, 0.4% ETV4+, and none ETV5+. Higher Decipher risk status tumors were more likely to be ETS+ (ERG or ETV1/4/5) in the radical prostatectomy and the biopsy cohorts (P < 0.05). These results support the utility of microarray-based ETS status prediction models as part of a clinical test pipeline for molecular classification of prostate tumors.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?