ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cellular and molecular life sciences : CMLS
2021 Apr 21
De Clercq, K;Pérez-García, V;Van Bree, R;Pollastro, F;Peeraer, K;Voets, T;Vriens, J;
PMID: 33884443 | DOI: 10.1007/s00018-021-03837-3
Int J Neuropsychopharmacol.
2017 Dec 05
Zhu H, Zhou Y, Liu Z, Chen X, Li Y, Liu X, Ma L.
PMID: 29216351 | DOI: 10.1093/ijnp/pyx104
Abstract
BACKGROUND:
Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus, CS) or drugs (unconditioned stimulus, US). Whether CS- and US-retrieval trigger different memory reconsolidation processes is not clear.
METHODS:
Protein synthesis inhibitor or β-AR antagonist was systemically administrated or intra-central amygdala (CeA) infused immediately after cocaine re-exposure in cocaine-conditioned place preference (CPP) or self-administration (SA) mice models. β-ARs were conditional knockout in the CeA to further confirm the role of β-AR in cocaine re-exposure-induced memory reconsolidation of cocaine-CPP.
RESULTS:
Cocaine re-exposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-CPP. Cocaine-priming-induced reinstatement was also impaired with post cocaine-retrieval manipulation, in contrast to the relapse behavior with post context-retrieval manipulation. Cocaine-retrieval, but not context-retrieval, induced CeA activation. Protein synthesis inhibitor or β1-AR antagonist infused in the CeA after cocaine-retrieval, but not context-retrieval, inhibited memory reconsolidation and reinstatement. β1-AR conditional knockout in the CeA suppressed cocaine-retrieval triggered memory reconsolidation and reinstatement of cocaine-CPP. β1-AR antagonism after cocaine-retrieval also impaired reconsolidation and reinstatement of cocaine-SA.
CONCLUSIONS:
Cocaine reward memory triggered by US-retrieval is distinct from CS-retrieval. US-retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the CeA. Post US-retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction.
Communications biology
2021 Jun 08
Napso, T;Zhao, X;Lligoña, MI;Sandovici, I;Kay, RG;George, AL;Gribble, FM;Reimann, F;Meek, CL;Hamilton, RS;Sferruzzi-Perri, AN;
PMID: 34103657 | DOI: 10.1038/s42003-021-02214-x
Placenta
2017 Dec 07
Rajan KAN, Khater M, Soncin F, Pizzo D, Moretto-Zita M, Pham J, Stus O, Iyer P, Tache V, Laurent LC, Parast MM.
PMID: - | DOI: 10.1016/j.placenta.2017.12.002
Abstract
Introduction
Placental insufficiency, arising from abnormal trophoblast differentiation and function, is a major cause of fetal growth restriction. Sirtuin-1 (Sirt1) is a ubiquitously-expressed NAD-dependent protein deacetylase which plays a key role in numerous cellular processes, including cellular differentiation and metabolism. Though Sirt1 has been widely studied, its role in placentation and trophoblast differentiation is unclear.
Method
Sirt1-heterozygous mice were mated and evaluated at various points during embryogenesis. In situ hybridization and immunohistochemistry were used to further characterize the placental phenotype of Sirt1-null mice. Wild-type (WT) and Sirt1-null mouse trophoblast stem cell (TSC) lines were derived from e3.5 littermate blastocysts. These cells were then evaluated at various points following differentiation. Differentiation was evaluated by expression of lineage specific markers using qPCR and flow cytometry, as well as Matrigel invasion assays. Global gene expression changes were evaluated using microarray-based RNA profiling; changes in specific pathways were validated using qPCR and western blot.
Results
In the absence of Sirt1, both embryos and placentas were small, with placentas showing abnormalities in both the labyrinthine layer and junctional zone. Sirt1-null TSCs exhibited an altered phenotype in both undifferentiated and differentiated states, phenotypes which corresponded to changes in pathways relevant to both TSC maintenance and differentiation. Specifically, Sirt1-null TSC showed blunted differentiation, and appeared to be suspended in an Epcamhigh trophoblast progenitor state.
Discussion
Our results suggest that Sirt1 is required for proper TSC differentiation and placental development.
Communications biology
2022 Oct 17
Cheng, D;Wu, J;Yan, E;Fan, X;Wang, F;Ma, L;Liu, X;
PMID: 36253525 | DOI: 10.1038/s42003-022-04051-y
Elife.
2017 Jun 20
Paeger L, Karakasilioti I, Altmüller J, Frommolt P, Brüning J, Kloppenburg P.
PMID: 28632132 | DOI: 10.7554/eLife.25770
In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and β- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.
Scientific Reports
2017 Jan 09
Chou AM, Sem KP, Lam WJ, Ahmed S, Lim CY.
PMID: 28067313 | DOI: 10.1038/srep40485
The insulin receptor substrate of 53 kDa, IRSp53, is an adaptor protein that works with activated GTPases, Cdc42 and Rac, to modulate actin dynamics and generate membrane protrusions in response to cell signaling. Adult mice that lack IRSp53 fail to regulate synaptic plasticity and exhibit hippocampus-associated learning deficiencies. Here, we show that 60% of IRSp53 null embryos die at mid to late gestation, indicating a vital IRSp53 function in embryonic development. We find that IRSp53 KO embryos displayed pleiotropic phenotypes such as developmental delay, oligodactyly and subcutaneous edema, and died of severely impaired cardiac and placental development. We further show that double knockout of IRSp53 and its closest family member, IRTKS, resulted in exacerbated placental abnormalities, particularly in spongiotrophoblast differentiation and development, giving rise to complete embryonic lethality. Hence, our findings demonstrate a hitherto under-appreciated IRSp53 function in embryonic development, and further establish an essential genetic interaction between IRSp53 and IRTKS in placental formation.
bioRxiv : the preprint server for biology
2023 Feb 05
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com