Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (168)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • (-) Remove SARS-CoV-2 filter SARS-CoV-2 (136)
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • (-) Remove SOX2 filter SOX2 (24)
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (43) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (30) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (20) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (15) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (10) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (9) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (6) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (6) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • TBD (3) Apply TBD filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • Covid (113) Apply Covid filter
  • Infectious (39) Apply Infectious filter
  • Neuroscience (22) Apply Neuroscience filter
  • Inflammation (11) Apply Inflammation filter
  • Stem Cells (9) Apply Stem Cells filter
  • Immunotherapy (8) Apply Immunotherapy filter
  • Reproduction (7) Apply Reproduction filter
  • Cancer (6) Apply Cancer filter
  • Development (4) Apply Development filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Vaccines (4) Apply Vaccines filter
  • Vaccine (3) Apply Vaccine filter
  • Covid-19 (2) Apply Covid-19 filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Lung (2) Apply Lung filter
  • Neuroinflammation (2) Apply Neuroinflammation filter
  • Other: Methods (2) Apply Other: Methods filter
  • Stem cell (2) Apply Stem cell filter
  • Addiction (1) Apply Addiction filter
  • Adrenal (1) Apply Adrenal filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • chimeric VLP-based Vaccine (1) Apply chimeric VLP-based Vaccine filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • DYT1dystonia (1) Apply DYT1dystonia filter
  • Endocrinology (1) Apply Endocrinology filter
  • Heart (1) Apply Heart filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infammation (1) Apply Infammation filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Influenza (1) Apply Influenza filter
  • Long-Covid (1) Apply Long-Covid filter
  • Neurobiology (1) Apply Neurobiology filter
  • Nueroscience (1) Apply Nueroscience filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other (1) Apply Other filter
  • Other: Fish Development (1) Apply Other: Fish Development filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Psychiatry (1) Apply Psychiatry filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sex Differences (1) Apply Sex Differences filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (168) Apply Publications filter
Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis

Cell reports

2023 Feb 28

Guyer, RA;Stavely, R;Robertson, K;Bhave, S;Mueller, JL;Picard, NM;Hotta, R;Kaltschmidt, JA;Goldstein, AM;
PMID: 36857184 | DOI: 10.1016/j.celrep.2023.112194

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.
Neuropathological features of SARS-CoV-2 delta and omicron variants

Journal of neuropathology and experimental neurology

2023 Feb 27

Normandin, E;Valizadeh, N;Rudmann, EA;Uddin, R;Dobbins, ST;MacInnis, BL;Padera, RF;Siddle, KJ;Lemieux, JE;Sabeti, PC;Mukerji, SS;Solomon, IH;
PMID: 36847705 | DOI: 10.1093/jnen/nlad015

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.
A SARS-CoV-2 Delta variant case manifesting as extensive placental infection and fetal transmission

Gynecologic and obstetric investigation

2022 May 06

Shen, WB;Turan, S;Wang, B;Cojocaru, L;Harman, C;Logue, J;Reece, EA;Frieman, MB;Yang, P;
PMID: 35526532 | DOI: 10.1159/000524905

Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif.To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case that unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 hours, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes.We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.S. Karger AG, Basel.
Intravenous, Intratracheal, and Intranasal Inoculation of Swine with SARS-CoV-2

Viruses

2021 Jul 30

Buckley, A;Falkenberg, S;Martins, M;Laverack, M;Palmer, MV;Lager, K;Diel, DG;
PMID: 34452371 | DOI: 10.3390/v13081506

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.
Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells

Stem cell reports

2021 Jun 30

Watson, AES;de Almeida, MMA;Dittmann, NL;Li, Y;Torabi, P;Footz, T;Vetere, G;Galleguillos, D;Sipione, S;Cardona, AE;Voronova, A;
PMID: 34270934 | DOI: 10.1016/j.stemcr.2021.06.010

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.
The Skin as a critical window in unveiling the pathophysiologic principles of COVID-19

Clinics in Dermatology

2021 Jul 01

Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001

The severe acute respiratory distress syndrome-associated coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a single-stranded RNA virus whose sequence is known. COVID-19 is associated with a heterogeneous clinical phenotype ranging from asymptomatic to fatal disease. It appears that access to nasopharyngeal respiratory epithelia expressing angiotensin-converting enzyme (ACE) 2, the receptor for SARS CoV-2, is followed by viral replication in the pulmonary alveolar septal capillary bed. We have shown in prior studies that incomplete viral particles, termed pseudovirions, dock to deep subcutaneous and other vascular beds potentially contributing to the prothrombotic state and systemic complement activation that characterizes severe and critical COVID-19. A variety of skin rashes have been described in the setting of SARS-CoV-2 infection and more recently, following COVID-19 vaccination. The vaccines deliver a laboratory synthesized mRNA that encodes a protein that is identical to the spike glycoprotein of SARS-COV-2 allowing the production of immunogenic spike glycoprotein that will then elicit T cell and B cell adaptive immune responses. In this paper we review an array of cutaneous manifestations of COVID-19 that provide an opportunity to study critical pathophysiologic mechanisms that underlie all clinical facets of COVID-19 ranging from asymptomatic/mild to severe and critical COVID-19. We classify cutaneous COVID-19 according to underlying pathophysiologic principles. In this regard we propose two main pathways: 1) complement mediated thrombotic vascular injury syndromes deploying the alternative and mannan binding lectin pathways in the setting of severe and critical COVID-19 and 2) the robust T cell and type I interferon driven inflammatory and humoral driven immune complex mediated vasculitic cutaneous reactions seen with mild and moderate COVID-19. Novel data on cutaneous vaccine reactions are presented that manifest a clinical and morphologic parallel with similar eruptions seen in patients suffering from mild and moderate COVID-19 and in most cases represent systemic eczematoid hypersensitivity reactions to a putative vaccine based antigen. Finally, we show for the first time the localization of human synthesized spike glycoprotein following the COVID-19 vaccine to the cutaneous and subcutaneous vasculature confirming the ability of SARS CoV-2 spike glycoprotein to bind endothelium in the absence of intact virus.
Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis.

Proc Natl Acad Sci U S A.

2019 Mar 25

Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok H, Robson P, Fossati V, Williams A, Crocker SJ.
PMID: 30910981 | DOI: 10.1073/pnas.1818348116

Cellular senescence is a form of adaptive cellular physiology associated with aging. Cellular senescence causes a proinflammatory cellular phenotype that impairs tissue regeneration, has been linked to stress, and is implicated in several human neurodegenerative diseases. We had previously determined that neural progenitor cells (NPCs) derived from induced pluripotent stem cell (iPSC) lines from patients with primary progressive multiple sclerosis (PPMS) failed to promote oligodendrocyte progenitor cell (OPC) maturation, whereas NPCs from age-matched control cell lines did so efficiently. Herein, we report that expression of hallmarks of cellular senescence were identified in SOX2+progenitor cells within white matter lesions of human progressive MS (PMS) autopsy brain tissues and iPS-derived NPCs from patients with PPMS. Expression of cellular senescence genes in PPMS NPCs was found to be reversible by treatment with rapamycin, which then enhanced PPMS NPC support for oligodendrocyte (OL) differentiation. A proteomic analysis of the PPMS NPC secretome identified high-mobility group box-1 (HMGB1), which was found to be a senescence-associated inhibitor of OL differentiation. Transcriptome analysis of OPCs revealed that senescent NPCs induced expression of epigenetic regulators mediated by extracellular HMGB1. Lastly, we determined that progenitor cells are a source of elevated HMGB1 in human white matter lesions. Based on these data, we conclude that cellular senescence contributes to altered progenitor cell functions in demyelinated lesions in MS. Moreover, these data implicate cellular aging and senescence as a process that contributes to remyelination failure in PMS, which may impact how this disease is modeled and inform development of future myelin regeneration strategies.

Histopathology and SARS-CoV-2 Cellular Localization in Eye Tissues of COVID-19 Autopsies

The American journal of pathology

2023 Mar 22

Nida Sen, H;Vannella, KM;Wang, Y;Chung, JY;Kodati, S;Ramelli, SC;Lee, JW;Perez, P;Stein, SR;Grazioli, A;Dickey, JM;Ylaya, K;Singh, M;Yinda, KC;Platt, A;Ramos-Benitez, MJ;Zerbe, C;Munster, VJ;de Wit, E;Warner, BM;Herr, DL;Rabin, J;Saharia, KK;NIH COVID-19 Autopsy Consortium, ;Kleiner, DE;Hewitt, SM;Chan, CC;Chertow, DS;
PMID: 36963628 | DOI: 10.1016/j.ajpath.2023.02.016

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. For this current study, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. From the other four patients, sections of the droplet digital PCR-positive eyes were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, within ocular tissues, a range of common histopathologic alterations were identified, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.
Use of a Preclinical Natural Transmission Model to Study Antiviral Effects of a Carbohydrate-Binding Module Therapy against SARS-CoV-2 in Hamsters

Viruses

2023 Mar 11

Knott, D;Fell, R;Potter, JA;Yuille, S;Salguero, FJ;Graham, VA;Hewson, R;Howat, D;Dowall, SD;
PMID: 36992434 | DOI: 10.3390/v15030725

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 remained high, demonstrating a need for the development of physiologically relevant models, which are essential for the identification of alternative antiviral strategies. The hamster model of SARS-CoV-2 infection has been widely adopted due to similarities with humans in terms of host cell entry mechanism (via ACE2), and aspects of symptomology and virus shedding. We have previously described a natural transmission hamster model that better represents the natural course of infection. In the present study, we have conducted further testing of the model using the first-in-class antiviral Neumifil, which has previously shown promise against SARS-CoV-2 after a direct intranasal challenge. Neumifil is an intranasally delivered carbohydrate-binding module (CBM) which reduces the binding of viruses to their cellular receptor. By targeting the host cell, Neumifil has the potential to provide broad protection against multiple pathogens and variants. This study demonstrates that using a combination of a prophylactic and therapeutic delivery of Neumifil significantly reduces the severity of clinical signs in animals infected via a natural route of transmission and indicates a reduction of viral loads in the upper respiratory tract. Further refinements of the model are required in order to ensure the adequate transmission of the virus. However, our results provide additional data to the evidence base of Neumifil efficacy against respiratory virus infection and demonstrate that the transmission model is a potentially valuable tool for testing antiviral compounds against SARS-CoV-2.
Absence of SARS-CoV-2 Spike glycoprotein expression in placentas from individuals after mRNA SARS-CoV-2 vaccination

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2022 Mar 31

Santos, A;Sauer, M;Neil, AJ;Solomon, IH;Hornick, JL;Roberts, DJ;Quade, BJ;Parra-Herran, C;
PMID: 35361888 | DOI: 10.1038/s41379-022-01061-3

Current public health initiatives to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic focus on expanding vaccination efforts to include vulnerable populations such as pregnant people. Vaccines using messenger ribonucleic acid (mRNA) technology rely on translation by immune cells, primarily at the injection site. Hesitancy remains among the general population regarding the safety of mRNA vaccines during gestation, and it remains unknown whether the SARS-CoV-2 Spike protein (the product of mRNA vaccines available) accumulates in the placenta after vaccination. Objective: To determine whether Spike protein translation and accumulation occurs in placental tissue in the context of recent mRNA SARC-CoV-2 vaccination during pregnancy. We identified 48 patients receiving one or two doses of mRNA SARS-CoV-2 vaccine during gestation and used immunohistochemistry against SARS-CoV-2 Spike protein in formalin-fixed, paraffin-embedded placental tissue. One placenta, positive for SARS-CoV-2 RNA by in situ hybridization (ISH) was used as positive control. Seven term placentas collected prior to the emergence of SARS-CoV-2 served as negative controls. Eighty one percent of patients in the study group underwent third-trimester delivery; remaining had a first-trimester spontaneous abortion or elective second-trimester termination. Patients received two (52%) or one (48%) vaccine doses during pregnancy, with a median interval between latest dose and delivery of 13 days (range 2-79 days). Most (63%) cases had their latest dose within 15 days prior to delivery. All the placentas in the study and negative control groups were negative for SARS-CoV-2 immunohistochemistry. Six study cases with short vaccine-delivery intervals (2-7 days) were subjected to SARS-CoV-2 ISH and were negative. Our findings suggest that mRNA vaccines do not reach significant concentrations in the placenta given the absence of definitive SARS-CoV-2 Spike protein accumulation in placental tissue. This observation provides evidence supporting the safety of mRNA vaccines to the placental-fetal unit.
Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

Front. Physiol.

2016 Mar 14

Lodge EJ, Russell JP, Patist AL, Francis-West P, Andoniadou CL.
PMID: - | DOI: 10.3389/fphys.2016.00114

The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model

The American journal of pathology

2023 Mar 10

Ball, EE;Weiss, CM;Liu, H;Jackson, K;Keel, MK;Miller, CJ;Van Rompay, KKA;Coffey, LL;Pesavento, PA;
PMID: 36906263 | DOI: 10.1016/j.ajpath.2023.02.013

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Here, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters are likely due to endothelial damage followed by platelet and macrophage infiltration.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?