Royan, M;Siddique, K;Nourizadeh-lillabadi, R;Weltzien, F;Henkel, C;FONTAINE, R;
| DOI: 10.2139/ssrn.4142092
In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope populations have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these extra populations are not known. We recently described two distinct prolactin-expressing cell types in Japanese medaka, a salinity tolerant fish, using single cell transcriptomics. In this study, we thus characterize the two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent the spatially distinct cell populations found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell groups, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal’s sex. Surprisingly, there seems to be no correspondence between the stem cell-like lactotropes and these newly emerging lactotrope populations. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in the medaka pituitary decreases when environmental salinity increases in the two spatially distinct lactotrope clusters, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell groups, suggesting that these lactotropes are differentially regulated.
Faltings, L;Sarowar, T;Virga, J;Singh, N;Kwa, B;Zhao, H;
| DOI: 10.1093/neuonc/noac079.046
Choroid plexus (CP) tumors are rare primary brain neoplasms found most commonly in children and are thought to arise from CP epithelial cells. Sox2 is a transcription factor that not only plays a role in development in the ventricular zone, CP, and roof plate, but also contributes to cancer stemness, tumorigenesis, and drug resistance. Gene expression studies demonstrate aberrant Sox2 expression in human CP tumors, suggesting a role in tumor development. A subset of CP tumors exhibit abnormal NOTCH pathway activity. Using animal models, we previously show that sustained NOTCH activity leads to CP tumors. Immunofluorescence, RT-qPCR, and RNA scope assays have revealed increased Sox2 levels in NOTCH-driven CP tumors compared to wild type CP in mice. To investigate the role of Sox2 in CP tumors, we eliminated Sox2 expression in NOTCH-driven CP tumors. Loss of Sox2 almost completely blocked NOTCH-driven CP tumor growth in these mice, supporting a role for Sox2 in these tumors. Ciliation regulation is one proposed functional pathway for tumorigenesis in CP tumors. Using immunofluorescence assays for cilia (ARL13b) and aquaporin transport protein 1 (AQP1) in combination with super resolution microscopy, we observe a stark contrast between wild type CP epithelial cells which are multiciliated and homogeneously express AQP1, indicative of normal epithelial differentiation, compared to NOTCH-driven CP tumors consisting of mono-ciliated cells with loss of AQP1 expression. In Sox2-deficient NOTCH-driven CP tumors, we observe tumor cells remain mono-ciliated and AQP1-negative, indicating that Sox2 loss does not affect the ciliation machinery. Together this warrants further study into the mechanisms of Sox2 functions in CP tumors. By unraveling the role of Sox2 in CP tumors, we may better understand their origin and biology to ultimately design improved treatment options.
Journal of molecular endocrinology, 50(3), 325–336.
Boess F, Bertinetti-Lapatki C, Zoffmann S, George C, Pfister T, Roth A, Lee SM, Thasler WE, Singer T, Suter L (2013).
PMID: 23463748 | DOI: 10.1530/JME-12-0186.
Glucagon-like peptide 1 (GLP1) analogs have been associated with an increased incidence of thyroid C-cell hyperplasia and tumors in rodents. This effect may be due to a GLP1 receptor (GLP1R)-dependent mechanism. As the expression of GLP1R is much lower in primates than in rodents, the described C-cell proliferative lesions may not be relevant to man. Here, we aimed to establish primary thyroid cell cultures of rat and human to evaluate the expression and function of GLP1R in C-cells. In our experiments, GLP1R expression was observed in primary rat C-cells (in situ hybridization) but was not detected in primary human C-cells (mRNA and protein levels). The functional response of the cultures to the stimulation with GLP1R agonists is an indirect measure of the presence of functional receptor. Liraglutide and taspoglutide elicited a modest increase in calcitonin release and in calcitonin expression in rat primary thyroid cultures. Contrarily, no functional response to GLP1R agonists was observed in human thyroid cultures, despite the presence of few calcitonin-positive C-cells. Thus, the lack of functional response of the human cultures adds to the weight of evidence indicating that healthy human C-cells have very low levels or completely lack GLP1R. In summary, our results support the hypothesis that the GLP1R agonist-induced C-cell responses in rodents may not be relevant to primates. In addition, the established cell culture method represents a useful tool to study the physiological and/or pathological roles of GLP1 and GLP1R agonists on normal, non-transformed primary C-cells from rats and man.
British journal of pharmacology
Kaur, H;Yerra, VG;Batchu, SN;Tran, DT;Kabir, MG;Liu, Y;Advani, SL;Sedrak, P;Geldenhuys, L;Tennankore, KK;Poyah, P;Siddiqi, FS;Advani, A;
PMID: 37115600 | DOI: 10.1111/bph.16101
Activated fibroblasts deposit fibrotic matrix in chronic kidney disease (CKD) and G-protein coupled receptors (GPCRs) are the most druggable therapeutic targets. Here, we set out to establish a transcriptional profile that identifies activated kidney fibroblasts and the GPCRs that they express.RNA sequencing and single cell qRT-PCR were performed on mouse kidneys after unilateral ureteral obstruction (UUO). Candidate expression was evaluated in mice with UUO or diabetes or injected with adriamycin or folic acid. Intervention studies were conducted in mice with diabetes or UUO. Correlative histology was performed in human kidney tissue.Transcription factor 21 (Tcf21)+ cells that expressed 2 or 3 of Postn, Acta2 and Pdgfra were highly enriched for fibrogenic genes and were defined as activated kidney fibroblasts. Tcf21+ α-smooth muscle actin (α-SMA)+ interstitial cells accumulated in the kidneys of mice with UUO or diabetes or injected with adriamycin or folic acid, whereas renin angiotensin system blockade attenuated increases in Tcf21 in diabetic mice. Fifty-six GPCRs were upregulated in single Tcf21+ kidney fibroblasts, the most upregulated being Adgra2 and S1pr3. The adenosine receptors, Adora2a/2b were upregulated in Tcf21+ fibroblasts and the adenosine receptor antagonist, caffeine decreased Tcf21 upregulation and kidney fibrosis in UUO mice. TCF21, ADGRA2, S1PR3 and ADORA2A/2B were each detectable in α-SMA+ interstitial cells in human kidneys.Tcf21 is a marker of kidney fibroblasts that are enriched for fibrogenic genes in CKD. Study of GPCRs expressed by these cells may identify new opportunities for CKD therapeutics.This article is protected by
bioRxiv : the preprint server for biology
Sun, Q;van de Lisdonk, D;Ferrer, M;Gegenhuber, B;Wu, M;Tollkuhn, J;Janowitz, T;Li, B;
PMID: 36711916 | DOI: 10.1101/2023.01.12.523716
Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.
Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525
Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons.We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons.Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control.NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells
Grunddal, KV;Tonack, S;Egerod, KL;Thompson, JJ;Petersen, N;Engelstoft, MS;Vagne, C;Keime, C;Gradwohl, G;Offermanns, S;Schwartz, TW;
PMID: 33831593 | DOI: 10.1016/j.molmet.2021.101231
GPR64/ADGRG2 is an orphan Adhesion G protein-coupled receptor (ADGR) known to be mainly expressed in the parathyroid gland and epididymis. This investigation aimed to delineate the cellular expression of GPR64 throughout the body with focus on the gastrointestinal (GI) tract. Transgenic Gpr64mCherry reporter mice were histologically examined throughout the body and reporter protein expression in intestinal tuft cells was confirmed by specific cell ablation. The GPCR repertoire of intestinal Gpr64mCherry-positive tuft cells was analyzed by quantitative RT-PCR analysis and in situ hybridization. The Gpr64mCherry was crossed into the general tuft cell reporter Trpm5GFP to generate small intestinal organoids for time-lapse imaging. Intestinal tuft cells were isolated from small intestine, FACS-purified and transcriptionally compared using RNA-seq analysis. Expression of the Gpr64mCherry reporter was identified in multiple organs and specifically in olfactory microvillous cells, enteric nerves, and importantly in respiratory and GI tuft cells. In the small intestine, cell ablation targeting Gpr64-expressing epithelial cells eliminated tuft cells. Transcriptional analysis of small intestinal Gpr64mCherry -positive tuft cells confirmed expression of Gpr64 and the chemo-sensors Sucnr1, Gprc5c, Drd3, and Gpr41/Ffar3. Time-lapse studies of organoids from Trpm5GFP:Gpr64mCherry mice revealed sequential expression of initially Trpm5GFP and subsequently also Gpr64mCherry in maturing intestinal tuft cells. RNA-seq analysis of small intestinal tuft cells based on these two markers demonstrated a dynamic change in expression of transcription factors and GPCRs from young to mature tuft cells. GPR64 is expressed in chemosensory epithelial cells across a broad range of tissues; however, in the GI tract, GPR64 is remarkably selectively expressed in mature versus young immunoregulatory tuft cells.
Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM.
PMID: 29233907 | DOI: 10.14814/phy2.13503
Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor.
Egerod KL, Petersen N ,Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L.
PMID: - | DOI: 10.1016/j.molmet.2018.03.016
Abstract
Objectives
G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagalafferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract.
Methods
Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situhybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents.
Results
GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents.
Conclusion
Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD.
PMID: 28472653 | DOI: 10.1016/j.neuron.2017.04.018
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Biological Psychiatry Global Open Science
Guerri, L;Dobbs, L;da Silva e Silva, D;Meyers, A;Ge, A;Lecaj, L;Djakuduel, C;Islek, D;Hipolito, D;Martinez, A;Shen, P;Marietta, C;Garamszegi, S;Capobianco, E;Jiang, Z;Schwandt, M;Mash, D;Alvarez, V;Goldman, D;
| DOI: 10.1016/j.bpsgos.2022.08.010
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type-II receptor (D2R) availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, Translating Ribosome Affinity Purification (TRAP) was used to purify and analyze the translatome (ribosome-bound mRNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA and cAMP signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 mRNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusion This study provides strong molecular evidence that in addiction inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland
Proceedings of the National Academy of Sciences of the United States of America
Vennekens, A;Laporte, E;Hermans, F;Cox, B;Modave, E;Janiszewski, A;Nys, C;Kobayashi, H;Malengier-Devlies, B;Chappell, J;Matthys, P;Garcia, MI;Pasque, V;Lambrechts, D;Vankelecom, H;
PMID: 34161279 | DOI: 10.1073/pnas.2100052118
Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.