Yu, Z;Han, Y;Hu, D;Chen, N;Zhang, Z;Chen, W;Xue, Y;Meng, S;Lu, L;Zhang, W;Shi, J;
PMID: 35264728 | DOI: 10.1038/s41380-022-01495-w
Depression is more prevalent among adolescents than adults, but the underlying mechanisms remain largely unknown. Using a subthreshold chronic stress model, here we show that developmentally regulated expressions of the perineuronal nets (PNNs), and one of the components, Neurocan in the prelimbic cortex (PrL) are important for the vulnerability to stress and depressive-like behaviors in both adolescent and adult rats. Reduction of PNNs or Neurocan with pharmacological or viral methods to mimic the expression of PNNs in the PrL during adolescence compromised resilience to stress in adult rats, while virally mediated overexpression of Neurocan reversed vulnerability to stress in adolescent rats. Ketamine, a recent-approved drug for treatment-resistant depression rescued impaired function of Parvalbumin-positive neurons function, increased expression of PNNs in the PrL, and reversed depressive-like behaviors in adolescent rats. Furthermore, we show that Neurocan mediates the anti-depressant effect of ketamine, virally mediated reduction of Neurocan in the PrL abolished the anti-depressant effect of ketamine in adolescent rats. Our findings show an important role of Neurocan in depression in adolescence, and suggest a novel mechanism for the anti-depressant effect of ketamine.
British journal of pharmacology
Kaur, H;Yerra, VG;Batchu, SN;Tran, DT;Kabir, MG;Liu, Y;Advani, SL;Sedrak, P;Geldenhuys, L;Tennankore, KK;Poyah, P;Siddiqi, FS;Advani, A;
PMID: 37115600 | DOI: 10.1111/bph.16101
Activated fibroblasts deposit fibrotic matrix in chronic kidney disease (CKD) and G-protein coupled receptors (GPCRs) are the most druggable therapeutic targets. Here, we set out to establish a transcriptional profile that identifies activated kidney fibroblasts and the GPCRs that they express.RNA sequencing and single cell qRT-PCR were performed on mouse kidneys after unilateral ureteral obstruction (UUO). Candidate expression was evaluated in mice with UUO or diabetes or injected with adriamycin or folic acid. Intervention studies were conducted in mice with diabetes or UUO. Correlative histology was performed in human kidney tissue.Transcription factor 21 (Tcf21)+ cells that expressed 2 or 3 of Postn, Acta2 and Pdgfra were highly enriched for fibrogenic genes and were defined as activated kidney fibroblasts. Tcf21+ α-smooth muscle actin (α-SMA)+ interstitial cells accumulated in the kidneys of mice with UUO or diabetes or injected with adriamycin or folic acid, whereas renin angiotensin system blockade attenuated increases in Tcf21 in diabetic mice. Fifty-six GPCRs were upregulated in single Tcf21+ kidney fibroblasts, the most upregulated being Adgra2 and S1pr3. The adenosine receptors, Adora2a/2b were upregulated in Tcf21+ fibroblasts and the adenosine receptor antagonist, caffeine decreased Tcf21 upregulation and kidney fibrosis in UUO mice. TCF21, ADGRA2, S1PR3 and ADORA2A/2B were each detectable in α-SMA+ interstitial cells in human kidneys.Tcf21 is a marker of kidney fibroblasts that are enriched for fibrogenic genes in CKD. Study of GPCRs expressed by these cells may identify new opportunities for CKD therapeutics.This article is protected by
Janik, K;Smith, GM;Krynska, B;
PMID: 37048157 | DOI: 10.3390/cells12071084
Open neural tube defects (NTDs) such as myelomeningocele (MMC) are debilitating and the most common congenital defects of the central nervous system. Despite their apparent clinical importance, the existing early prenatal diagnostic options for these defects remain limited. Using a well-accepted retinoic-acid-induced model of MMC established in fetal rats, we discovered that neurocan and phosphacan, the secreted chondroitin sulfate proteoglycans of the developing nervous system, are released into the amniotic fluid (AF) of fetal rats displaying spinal cord defects. In contrast to normal controls, elevated AF levels of neurocan and phosphacan were detected in MMC fetuses early in gestation and continued to increase during MMC progression, reaching the highest level in near-term fetuses. The molecular forms of neurocan and phosphacan identified in the AF of MMC fetuses and those found in MMC spinal cords were qualitatively similar. In summary, this is the first report demonstrating the presence of neurocan and phosphacan in the AF of MMC fetuses. The identification of elevated levels of neurocan and phosphacan in the AF of MMC fetuses provides two prospective biomarkers with the potential for early prenatal diagnosis of open NTDs.
Biological Psychiatry Global Open Science
Guerri, L;Dobbs, L;da Silva e Silva, D;Meyers, A;Ge, A;Lecaj, L;Djakuduel, C;Islek, D;Hipolito, D;Martinez, A;Shen, P;Marietta, C;Garamszegi, S;Capobianco, E;Jiang, Z;Schwandt, M;Mash, D;Alvarez, V;Goldman, D;
| DOI: 10.1016/j.bpsgos.2022.08.010
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type-II receptor (D2R) availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, Translating Ribosome Affinity Purification (TRAP) was used to purify and analyze the translatome (ribosome-bound mRNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA and cAMP signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 mRNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusion This study provides strong molecular evidence that in addiction inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Downs, AM;Donsante, Y;Jinnah, HA;Hess, EJ;
PMID: 35314320 | DOI: 10.1016/j.nbd.2022.105699
Trihexyphenidyl (THP), a non-selective muscarinic receptor (mAChR) antagonist, is commonly used for the treatment of dystonia associated with TOR1A, otherwise known as DYT1 dystonia. A better understanding of the mechanism of action of THP is a critical step in the development of better therapeutics with fewer side effects. We previously found that THP normalizes the deficit in striatal dopamine (DA) release in a mouse model of TOR1A dystonia (Tor1a+/ΔE knockin (KI) mice), revealing a plausible mechanism of action for this compound, considering that abnormal DA neurotransmission is consistently associated with many forms of dystonia. However, the mAChR subtype(s) that mediate the rescue of striatal dopamine release remain unclear. In this study we used a combination of pharmacological challenges and cell-type specific mAChR conditional knockout mice of either sex to determine which mAChR subtypes mediate the DA release-enhancing effects of THP. We determined that THP acts in part at M4 mAChR on striatal cholinergic interneurons to enhance DA release in both Tor1a+/+ and Tor1a+/ΔE KI mice. Further, we found that the subtype selective M4 antagonist VU6021625 recapitulates the effects of THP. These data implicate a principal role for M4 mAChR located on striatal cholinergic interneurons in the mechanism of action of THP and suggest that subtype selective M4 mAChR antagonists may be effective therapeutics with fewer side effects than THP for the treatment of TOR1A dystonia.
Complete representation of action space and value in all dorsal striatal pathways
Weglage, M;Wärnberg, E;Lazaridis, I;Calvigioni, D;Tzortzi, O;Meletis, K;
PMID: 34320355 | DOI: 10.1016/j.celrep.2021.109437
The dorsal striatum plays a central role in the selection, execution, and evaluation of actions. An emerging model attributes action selection to the matrix and evaluation to the striosome compartment. Here, we use large-scale cell-type-specific calcium imaging to determine the activity of striatal projection neurons (SPNs) during motor and decision behaviors in the three major outputs of the dorsomedial striatum: Oprm1+ striosome versus D1+ direct and A2A+ indirect pathway SPNs. We find that Oprm1+ SPNs show complex tunings to simple movements and value-guided actions, which are conserved across many sessions in a single task but remap between contexts. During decision making, the SPN tuning profiles form a complete representation in which sequential SPN activity jointly encodes task progress and value. We propose that the three major output pathways in the dorsomedial striatum share a similarly complete representation of the entire action space, including task- and phase-specific signals of action value and choice.
McCullough KM, Daskalakis NP, Gafford G, Morrison FG, Ressler KJ.
PMID: 30135420 | DOI: 10.1038/s41398-018-0190-y
Behavioral and molecular characterization of cell-type-specific populations governing fear learning and behavior is a promising avenue for the rational identification of potential therapeutics for fear-related disorders. Examining cell-type-specific changes in neuronal translation following fear learning allows for targeted pharmacological intervention during fear extinction learning, mirroring possible treatment strategies in humans. Here we identify the central amygdala (CeA) Drd2-expressing population as a novel fear-supporting neuronal population that is molecularly distinct from other, previously identified, fear-supporting CeA populations. Sequencing of actively translating transcripts of Drd2 neurons using translating ribosome affinity purification (TRAP) technology identifies mRNAs that are differentially regulated following fear learning. Differentially expressed transcripts with potentially targetable gene products include Npy5r, Rxrg, Adora2a, Sst5r, Fgf3, Erbb4, Fkbp14, Dlk1, and Ssh3. Direct pharmacological manipulation of NPY5R, RXR, and ADORA2A confirms the importance of this cellpopulation and these cell-type-specific receptors in fear behavior. Furthermore, these findings validate the use of functionally identified specific cell populations to predict novel pharmacological targets for the modulation of emotional learning.
Liu, Z;Le, Q;Lv, Y;Chen, X;Cui, J;Zhou, Y;Cheng, D;Ma, C;Su, X;Xiao, L;Yang, R;Zhang, J;Ma, L;Liu, X;
PMID: 34848869 | DOI: 10.1038/s41422-021-00588-5
Dopamine (DA) level in the nucleus accumbens (NAc) is critical for reward and aversion encoding. DA released from the ventral mesencephalon (VM) DAergic neurons increases the excitability of VM-projecting D1-dopamine receptor-expressing medium spiny neurons (D1-MSNs) in the NAc to enhance DA release and augment rewards. However, how such a DA positive feedback loop is regulated to maintain DA homeostasis and reward-aversion balance remains elusive. Here we report that the ventral pallidum (VP) projection of NAc D1-MSNs (D1NAc-VP) is inhibited by rewarding stimuli and activated by aversive stimuli. In contrast to the VM projection of D1-MSN (D1NAc-VM), activation of D1NAc-VP projection induces aversion, but not reward. D1NAc-VP MSNs are distinct from the D1NAc-VM MSNs, which exhibit conventional functions of D1-MSNs. Activation of D1NAc-VP projection stimulates VM GABAergic transmission, inhibits VM DAergic neurons, and reduces DA release into the NAc. Thus, D1NAc-VP and D1NAc-VM MSNs cooperatively control NAc dopamine balance and reward-aversion states.
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA.
PMID: 30096299 | DOI: 10.1016/j.cell.2018.07.028
The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.
A Spatiomolecular Map of the Striatum
Antje M�rtin, Daniela Calvigioni, Ourania Tzortzi, Janos Fuzik, Emi lW�rnberg, Konstantinos Meletis
| DOI: 10.1016/j.celrep.2019.11.096
The striatum is organized into two major outputs formed by striatal projection neuron (SPN) subtypes with distinct molecular identities. In addition, histochemical division into patch and matrix compartments represents an additional spatial organization, proposed to mirror a motor-motivation regionalization. To map the molecular diversity of patch versus matrix SPNs, we genetically labeled mu opioid receptor (Oprm1) expressing neurons and performed single-nucleus RNA sequencing. This allowed us to establish molecular definitions of patch, matrix, and exopatch SPNs, as well as identification of Col11a1+ striatonigral SPNs. At the tissue level, mapping the expression of candidate markers reveals organization of spatial domains, which are conserved in the non-human primate brain. The spatial markers are cell-type independent and instead represent a spatial code found across all SPNs within a spatial domain. The spatiomolecular map establishes a formal system for targeting and studying striatal subregions and SPNs subtypes, beyond the classical striatonigral and striatopallidal division