Yuan X, Huang Y, Shah S, Wu H, Gautron L.
PMID: - | DOI: 10.1523/ENEURO.0174-16.2016
Cocaine and Amphetamine-regulated Transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we re-assessed the distribution and regulation of CART (55-102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting, high-fat diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre-expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP-labeled axons could easily be identified in the dorsovagal complex. CART (55-102) immunoreactivity was observed in 55% of the ChR2-YFP-labeled neurons in the nodose ganglion and 22% of the ChR2-YFP-labeled varicosities within the area postrema of fed, fasted and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Significance Statement Recent studies reported that fasting triggers vagal afferents to switch from expressing anorectic to orexigenic neuropeptides. This study failed to replicate the aforementioned observations using a combination of confocal microscopy, immunohistochemistry, and in situ hybridization. In particular, we showed that neither fasting nor diet-induced obesity influence the immunoreactivity for Cocaine and Amphetamine-regulated Transcript neuropeptide in the mouse vagal afferents. In contrast to previous studies, we also failed to detect melanin-concentrating hormone expression in the mouse vagal afferents. Overall, we reached the conclusion that the neuropeptidergic profile of the vagal afferents involved in feeding is remarkably stable in response to metabolic challenges.
The Journal of clinical investigation
Yadav, VK;Berger, JM;Singh, P;Nagarajan, P;Karsenty, G;
PMID: 34905510 | DOI: 10.1172/JCI153752
Through their ability to regulate gene expression in most organs, glucocorticoid hormones influence numerous physiological processes and therefore are key regulators of organismal homeostasis. In bone, glucocorticoid hormones inhibit the expression of the hormone Osteocalcin for poorly understood reasons. Here we show that in a classical endocrine feedback loop, osteocalcin in return enhances the biosynthesis of glucocorticoid but also mineralocorticoid hormones (adrenal steroidogenesis) in rodents and primates. Conversely, inactivating osteocalcin signalling in adrenal glands significantly impairs adrenal growth and steroidogenesis in mice. Embryo-made osteocalcin is necessary for normal Sf1 expression in foetal adrenal cells and adrenal cell steroidogenic differentiation, it therefore determines the number of steroidogenic cells present in adrenal glands of adult animals. Embryonic not postnatal osteocalcin also governs adrenal growth, adrenal steroidogenesis, blood pressure, electrolyte equilibrium and the rise of circulating corticosterone during the acute stress response in adult offspring. This osteocalcin-dependent regulation of adrenal development and steroidogenesis occurs even in the absence of a functional of hypothalamus-pituitary-adrenal axis; this explains why osteocalcin administration during pregnancy promotes adrenal growth and steroidogenesis and improves survival of adrenocorticotropic hormone signalling-deficient animals. This study reveals that a bone-derived, embryonic hormone influences lifelong adrenal functions and organismal homeostasis in the mouse.
Biological Psychiatry Global Open Science
Funayama, Y;Li, H;Ishimori, E;Kawatake-Kuno, A;Inaba, H;Yamagata, H;Seki, T;Nakagawa, S;Watanabe, Y;Murai, T;Oishi, N;Uchida, S;
| DOI: 10.1016/j.bpsgos.2021.12.009
Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. As treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We utilized the large variance in behavioral responses to chronic treatment with multiple class of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and employed virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim test, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety behaviors. Results Cocaine- and amphetamine-regulated transcript peptide (Cartpt) expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic neurons of the anterior cingulate cortex (aCC) led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the aCC is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.
Calafate, S;Özturan, G;Thrupp, N;Vanderlinden, J;Santa-Marinha, L;Morais-Ribeiro, R;Ruggiero, A;Bozic, I;Rusterholz, T;Lorente-Echeverría, B;Dias, M;Chen, WT;Fiers, M;Lu, A;Vlaeminck, I;Creemers, E;Craessaerts, K;Vandenbempt, J;van Boekholdt, L;Poovathingal, S;Davie, K;Thal, DR;Wierda, K;Oliveira, TG;Slutsky, I;Adamantidis, A;De Strooper, B;de Wit, J;
PMID: 37188873 | DOI: 10.1038/s41593-023-01325-4
Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.
Bando, H;Brinkmeier, ML;Castinetti, F;Fang, Q;Lee, MS;Saveanu, A;Albarel, F;Dupuis, C;Brue, T;Camper, SA;
PMID: 35951005 | DOI: 10.1093/hmg/ddac192
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss of function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double; heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Long Y, Bordt AS, Liu WS, Davis EP, Lee SJ, Tseng L, Chuang AZ, Whitaker CM, Massey SC, Sherman MB, Marshak DW.
PMID: 27568514 | DOI: 10.1016/j.peptides.2016.08.007
The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells.
Chen, G;Lai, S;Bao, G;Ke, J;Meng, X;Lu, S;Wu, X;Xu, H;Wu, F;Xu, Y;Xu, F;Bi, GQ;Peng, G;Zhou, K;Zhu, Y;
PMID: 36753418 | DOI: 10.1016/j.celrep.2023.112069
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Jarmas, AE;Brunskill, EW;Chaturvedi, P;Salomonis, N;Kopan, R;
PMID: 34732708 | DOI: 10.1038/s41467-021-26626-9
Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.
Cellular and molecular gastroenterology and hepatology
Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015
Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Piskol R, Huw LY, Sergin I, Klijn C, Modrusan Z, Kim D, Kljavin NM, Tam R, Patel R, Burton J, Penuel E, Qu X, Koeppen H, Sumiyoshi T, de Sauvage FJ, Lackner MR, de Sousa E Melo F, Kabbarah O.
PMID: 31004000 | DOI: 10.1158/1078-0432.CCR-18-3032
Abstract
PURPOSE:
Four consensus molecular subtypes (CMS1-4) of colorectal cancer (CRC) were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for CRC-related mortality, we examined the molecular and clinical attributes of CMS in metastatic CRC (mCRC).
EXPERIMENTAL DESIGN:
We developed a CRC-focused Nanostring based CMS classifier that is ideally suited to interrogate archival tissues. We successfully employ this panel in the CMS classification of FFPE tissues from mCRC cohorts, one of which is comprised of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modelling of CRC in vivo at relevant sites.
RESULTS:
Using our classifier we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in non-metastatic early stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared to other CMS. Assigning CMS to primary tumors and their matched metastases revealed mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs revealed differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic CRC.
CONCLUSION:
We describe the utility of a Nanostring panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on CRC heterogeneity during disease progression.
MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus
Development (Cambridge, England)
Kaiser, K;Jang, A;Kompanikova, P;Lun, MP;Prochazka, J;Machon, O;Dani, N;Prochazkova, M;Laurent, B;Gyllborg, D;van Amerongen, R;Fame, RM;Gupta, S;Wu, F;Barker, RA;Bukova, I;Sedlacek, R;Kozmik, Z;Arenas, E;Lehtinen, MK;Bryja, V;
PMID: 34032267 | DOI: 10.1242/dev.192054
The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.
Ayupe, AC;Beckedorff, F;Levay, K;Yon, B;Salgueiro, Y;Shiekhattar, R;Park, KK;
PMID: 34649511 | DOI: 10.1186/s12864-021-08050-x
Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient.By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival.Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.