Shin S, Pribiag H, Lilascharoen V, Knowland D, Wang XY, Lim BK.
PMID: 29276054 | DOI: 10.1016/j.neuron.2017.11.040
Early life stress (ELS) in the form of child abuse/neglect is associated with an increased risk of developing social dysfunction in adulthood. Little is known, however, about the neural substrates or the neuromodulatory signaling that govern ELS-induced social dysfunction. Here, we show that ELS-induced downregulation of dopamine receptor 3 (Drd3) signaling and its corresponding effects on neural activity in the lateral septum (LS) are both necessary and sufficient to cause social abnormalities in adulthood. Using in vivo Ca2+ imaging, we found that Drd3-expressing-LS (Drd3LS) neurons in animals exposed to ELS show blunted activity in response to social stimuli. In addition, optogenetic activation of Drd3LS neurons rescues ELS-induced social impairments. Furthermore, pharmacological treatment with a Drd3 agonist, which increases Drd3LS neuronal activity, normalizes the social dysfunctions of ELS mice. Thus, we identify Drd3 in the LS as a critical mediator and potential therapeutic target for the social abnormalities caused by ELS.
McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG, O'Hara DM, Brotchie JM, Koprich JB, Lozano AM, Kalia LV, Kalia SK
PMID: 32059750 | DOI: 10.1186/s40478-020-0894-0
Parkinson's disease is a progressive neurodegenerative disorder characterised by the accumulation of misfolded ?-synuclein in selected brain regions, including the substantia nigra pars compacta (SNpc), where marked loss of dopaminergic neurons is also observed. Yet, the relationship between misfolded ?-synuclein and neurotoxicity currently remains unclear. As the principal route for degradation of misfolded proteins in mammalian cells, the ubiquitin-proteasome system (UPS) is critical for maintenance of cellular proteostasis. Misfolded ?-synuclein impairs UPS function and contributes to neuronal death in vitro. Here, we examine its effects in vivo using adeno-associated viruses to co-express A53T ?-synuclein and the ubiquitinated reporter protein UbG76V-GFP in rat SNpc. We found that ?-synuclein over-expression leads to early-onset catalytic impairment of the 26S proteasome with associated UPS dysfunction, preceding the onset of behavioural deficits and dopaminergic neurodegeneration. UPS failure in dopaminergic neurons was also associated with selective accumulation of ?-synuclein phosphorylated at the serine 129 residue, which has previously been linked to increased neurotoxicity. Our study highlights a role for ?-synuclein in disturbing proteostasis which may contribute to neurodegeneration in vivo
Liu, Z;Yang, N;Dong, J;Tian, W;Chang, L;Ma, J;Guo, J;Tan, J;Dong, A;He, K;Zhou, J;Cinar, R;Wu, J;Salinas, AG;Sun, L;Kumar, M;Sullivan, BT;Oldham, BB;Pitz, V;Makarious, MB;Ding, J;Kung, J;Xie, C;Hawes, SL;Wang, L;Wang, T;Chan, P;Zhang, Z;Le, W;Chen, S;Lovinger, DM;Blauwendraat, C;Singleton, AB;Cui, G;Li, Y;Cai, H;Tang, B;
PMID: 35715418 | DOI: 10.1038/s41467-022-31168-9
Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase β (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.
Wimalasena, NK;Taub, DG;Shim, J;Hakim, S;Kawaguchi, R;Chen, L;El-Rifai, M;Geschwind, D;Dib-Hajj, SD;Waxman, SG;Woolf, CJ;
PMID: 37003485 | DOI: 10.1016/j.expneurol.2023.114393
Gain-of-function mutations in Scn9a, which encodes the peripheral sensory neuron-enriched voltage-gated sodium channel Nav1.7, cause paroxysmal extreme pain disorder (PEPD), inherited erythromelalgia (IEM), and small fiber neuropathy (SFN). Conversely, loss-of-function mutations in the gene are linked to congenital insensitivity to pain (CIP). These mutations are evidence for a link between altered sodium conductance and neuronal excitability leading to somatosensory aberrations, pain, or its loss. Our previous work in young adult mice with the Nav1.7 gain-of-function mutation, I228M, showed the expected DRG neuron hyperexcitability, but unexpectedly the mice had normal mechanical and thermal behavioral sensitivity. We now show that with aging both male and female mice with this mutation unexpectedly develop a profound insensitivity to noxious heat and cold, as well skin lesions that span the body. Electrophysiology demonstrates that, in contrast to young mice, aged I228M mouse DRGs have a profound loss of sodium conductance and changes in activation and slow inactivation dynamics, representing a loss-of-function. Through RNA sequencing we explored how these age-related changes may produce the phenotypic changes and found a striking and specific decrease in C-low threshold mechanoreceptor- (cLTMR) associated gene expression, suggesting a potential contribution of this DRG neuron subtype to Nav1.7 dysfunction phenotypes. A GOF mutation in a voltage-gated channel can therefore produce over a prolonged time, highly complex and unexpected alterations in the nervous system beyond excitability changes.
Chen, G;Xu, J;Luo, H;Luo, X;Singh, SK;Ramirez, JJ;James, ML;Mathew, JP;Berger, M;Eroglu, C;Ji, RR;
PMID: 36256481 | DOI: 10.1172/jci.insight.161028
Hevin/Sparcl1 is an astrocyte-secreted protein and regulates synapse formation. Here we show that astrocytic hevin signaling plays a critical role in maintaining chronic pain. Compared to wild-type mice, hevin-null mice exhibited normal mechanical and heat sensitivity but reduced inflammatory pain. Interestingly, hevin-null mice have faster recovery than wild-type mice from neuropathic pain after nerve injury. Intrathecal injection of wild-type hevin was sufficient to induce persistent mechanical allodynia in naïve mice. In hevin-null mice with nerve injury, AAV-mediated re-expression of hevin in GFAP-expressing spinal cord astrocytes could reinstate neuropathic pain. Mechanistically, hevin is crucial for spinal cord NMDA receptor (NMDAR) signaling. Hevin potentiated NMDA currents mediated by the GluN2B-containing NMDARs. Furthermore, intrathecal injection of a neutralizing antibody against hevin alleviated acute and persistent inflammatory pain, postoperative pain, and neuropathic pain. Secreted hevin was detected in mouse cerebrospinal fluid (CSF) and nerve injury significantly increased CSF hevin abundance. Finally, neurosurgery caused rapid and substantial increases in SPARCL1/HEVIN levels in human CSF. Collectively, our findings support a critical role of hevin and astrocytes in the maintenance of chronic pain. Neutralizing of secreted hevin with monoclonal antibody may provide a new therapeutic strategy for treating acute and chronic pain and NMDAR-medicated neurodegeneration.
Cutando, L;Puighermanal, E;Castell, L;Tarot, P;Belle, M;Bertaso, F;Arango-Lievano, M;Ango, F;Rubinstein, M;Quintana, A;Chédotal, A;Mameli, M;Valjent, E;
PMID: 35710984 | DOI: 10.1038/s41593-022-01092-8
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Liu, JJ;Tsien, RW;Pang, ZP;
PMID: 34980924 | DOI: 10.1038/s41593-021-00984-5
Hypothalamic melanin-concentrating hormone (MCH) polypeptide contributes to regulating energy homeostasis, sleep and memory, although the mechanistic bases of its effects are unknown. In this study, in mice, we uncovered the physiological mechanism underlying the functional role of MCH signaling in projections to the dorsolateral septum (dLS), a region involved in routing hippocampal firing rhythms and encoding spatial memory based on such rhythms. Firing activity within the dLS in response to dorsal CA3 (dCA3) excitation is limited by strong feed-forward inhibition (FFI). We found that MCH synchronizes dLS neuronal firing with its dCA3 inputs by enhancing GABA release, which subsequently reduces the FFI and augments dCA3 excitatory input strength, both via pre-synaptic mechanisms. At the functional level, our data reveal a role for MCH signaling in the dLS in facilitating spatial memory. These findings support a model in which peptidergic signaling within the dLS modulates dorsal hippocampal output and supports memory encoding.
Wadsworth, HA;Anderson, EQ;Williams, BM;Ronström, JW;Moen, JK;Lee, AM;McIntosh, JM;Wu, J;Yorgason, JT;Steffensen, SC;
PMID: 36802012 | DOI: 10.1007/s12035-023-03263-5
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.
Gervasi NM, Scott SS, Aschrafi A, Gale J, Vohra SN, MacGibeny MA, Kar AN, Gioio AE, Kaplan BB.
PMID: 27095027 | DOI: 10.1261/rna.053272.115.
Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal.
Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S and Gundlach AL
PMID: 30891856 | DOI: 10.1002/hipo.23089
Anxiety disorders are highly prevalent in modern society and better treatments are required. Key brain areas and signaling systems underlying anxiety include prefrontal cortex, hippocampus, and amygdala, and monoaminergic and peptidergic systems, respectively. Hindbrain GABAergic projection neurons that express the peptide, relaxin-3, broadly innervate the forebrain, particularly the septum and hippocampus, and relaxin-3 acts via a Gi/o -protein-coupled receptor known as the relaxin-family peptide 3 receptor (RXFP3). Thus, relaxin-3/RXFP3 signaling is implicated in modulation of arousal, motivation, mood, memory, and anxiety. Ventral hippocampus (vHip) is central to affective and cognitive processing and displays a high density of relaxin-3-positive nerve fibers and RXFP3 binding sites, but the identity of target neurons and associated effects on behavior are unknown. Therefore, in adult, male rats, we assessed the neurochemical nature of hippocampal RXFP3 mRNA-expressing neurons and anxiety-like and social behavior following chronic RXFP3 activation in vHip by viral vector expression of an RXFP3-selective agonist peptide, R3/I5. RXFP3 mRNA detected by fluorescent in situ hybridization was topographically distributed across the hippocampus in somatostatin- and parvalbumin-mRNA expressing GABA neurons. Chronic RXFP3 activation in vHip increased anxiety-like behavior in the light-dark box and elevated-plus maze, but not the large open-field test, and reduced social interaction with a conspecific stranger. Our data reveal disruptive effects of persistent RXFP3 signaling on hippocampal GABA networks important in anxiety; and identify a potential therapeutic target for anxiety disorders that warrants further investigation in relevant preclinical models.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Velazquez-Sanchez, C;Muresan, L;Marti-Prats, L;Belin, D;
PMID: 36635597 | DOI: 10.1038/s41386-022-01522-y
Some compulsive disorders have been considered to stem from the loss of control over coping strategies, such as displacement. However, the cellular mechanisms involved in the acquisition of coping behaviours and their subsequent compulsive manifestation in vulnerable individuals have not been elucidated. Considering the role of the locus coeruleus (LC) noradrenaline-dependent system in stress and related excessive behaviours, we hypothesised that neuroplastic changes in the LC may be associated with the acquisition of an adjunctive polydipsic water drinking, a prototypical displacement behaviour, and the ensuing development of compulsion in vulnerable individuals. Thus, male Sprague Dawley rats were characterised for their tendency, or not, to develop compulsive polydipsic drinking in a schedule-induced polydipsia (SIP) procedure before their fresh brains were harvested. A new quantification tool for RNAscope assays revealed that the development of compulsive adjunctive behaviour was associated with a low mRNA copy number of the plasticity marker Arc in the LC which appeared to be driven by specific adaptations in an ensemble of tyrosine hydroxylase (TH)+, zif268- neurons. This ensemble was specifically engaged by the expression of compulsive adjunctive behaviour, not by stress, because its functional recruitment was not observed in individuals that no longer had access to the water bottle before sacrifice, while it consistently correlated with the levels of polydipsic water drinking only when it had become compulsive. Together these findings suggest that downregulation of Arc mRNA levels in a population of a TH+/zif268- LC neurons represents a signature of the tendency to develop compulsive coping behaviours.
Gu, X;Zhang, YZ;O'Malley, JJ;De Preter, CC;Penzo, M;Hoon, MA;
PMID: 36894654 | DOI: 10.1038/s41593-023-01268-w
Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.