ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Elife.
2018 Apr 20
Xiao L, Priest MF, Kozorovitskiy Y.
PMID: 29676731 | DOI: 10.7554/eLife.33892
The experience of rewarding or aversive stimuli is encoded by distinct afferents to dopamine (DA) neurons of the ventral tegmental area (VTA). Several neuromodulatory systems including oxytocin regulate DA neuron excitability and synaptic transmission that process socially meaningful stimuli. We and others have recently characterized oxytocinergic modulation of activity in mouse VTA DA neurons, but the mechanisms underlying oxytocinergic modulation of synaptic transmission in DA neurons remain poorly understood. Here, we find that oxytocin application or optogenetic release decrease excitatory synaptic transmission, via long lasting, presynaptic, endocannabinoid-dependent mechanisms. Oxytocin modulation of excitatory transmission alters the magnitude of short and long-term depression. We find that only some glutamatergic projections to DA neurons express CB1 receptors. Optogenetic stimulation of three major VTA inputs demonstrates that oxytocin modulation is limited to projections that show evidence of CB1R transcripts. Thus, oxytocin gates information flow into reward circuits in a temporally selective and pathway-specific manner.
Genes Dev.
2019 Jan 28
Basham KJ, Rodriguez S, Turcu AF, Lerario AM, Logan CY, Rysztak MR, Gomez-Sanchez CE, Breault DT, Koo BK, Clevers H, Nusse R, Val P, Hammer GD.
PMID: 30692207 | DOI: 10.1101/gad.317412.118
Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/β-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike β-catenin gain-of-function models, which induce high Wnt/β-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/β-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing β-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/β-catenin activation, which is regulated by ZNRF3.
Cell Rep
2019 May 21
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P.
PMID: 31116992 | DOI: 10.1016/j.celrep.2019.04.096
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.
Cell Rep
2020 Jul 04
Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS
PMID: 32023462 | DOI: 10.1016/j.celrep.2020.01.003
Developmental cell
2023 Mar 08
McCarthy, N;Tie, G;Madha, S;He, R;Kraiczy, J;Maglieri, A;Shivdasani, RA;
PMID: 36924771 | DOI: 10.1016/j.devcel.2023.02.012
Cell reports
2023 Mar 28
Sullivan, KE;Kraus, L;Kapustina, M;Wang, L;Stach, TR;Lemire, AL;Clements, J;Cembrowski, MS;
PMID: 36881508 | DOI: 10.1016/j.celrep.2023.112206
bioRxiv : the preprint server for biology
2023 Feb 08
Hughes, AC;Pollard, BG;Xu, B;Gammons, JW;Chapman, P;Bikoff, JB;Schwarz, LA;
PMID: 36798174 | DOI: 10.1101/2023.02.07.527312
Developmental cell
2022 Jun 07
Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010
bioRxiv : the preprint server for biology
2023 Feb 05
Su, Y;Xu, J;Zhu, Z;Yu, H;Nudell, V;Dash, B;Moya, EA;Ye, L;Nimmerjahn, A;Sun, X;
PMID: 36778350 | DOI: 10.1101/2023.02.04.527145
Cellular and molecular gastroenterology and hepatology
2022 May 13
Xie, L;Fletcher, RB;Bhatia, D;Shah, D;Phipps, J;Deshmukh, S;Zhang, H;Ye, J;Lee, S;Le, L;Newman, M;Chen, H;Sura, A;Gupta, S;Sanman, LE;Yang, F;Meng, W;Baribault, H;Vanhove, GF;Yeh, WC;Li, Y;Lu, C;
PMID: 35569814 | DOI: 10.1016/j.jcmgh.2022.05.003
Sci Rep.
2017 Oct 27
Rocco BR, Oh H, Shukla R, Mechawar N, Sibille E.
PMID: 29079825 | DOI: 10.1038/s41598-017-14484-9
Cell-specific molecular investigations of the human brain are essential for understanding the neurobiology of diseases, but are hindered by postmortem conditions and technical challenges. To address these issues we developed a multi-label fluorescence in situ hybridization protocol and a novel optical filter device to identify cell types and control for tissue autofluorescence. We show that these methods can be used with laser-capture microdissection for human brain tissue cell-specific molecular analysis.
Elife
2015 Dec 14
Xu Z, Wang W, Jiang K, Yu Z, Huang H, Wang F, Zhou B, Chen T.
PMID: 26653852 | DOI: 10.7554/eLife.10567
Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com