Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (171)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • (-) Remove Gad1 filter Gad1 (90)
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (50) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (22) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (14) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (85) Apply Neuroscience filter
  • Cancer (77) Apply Cancer filter
  • HPV (71) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Aging (2) Apply Aging filter
  • Autism spectrum disorder (2) Apply Autism spectrum disorder filter
  • CGT (2) Apply CGT filter
  • Development (2) Apply Development filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Stress (2) Apply Stress filter
  • Addiction (1) Apply Addiction filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • Behavior (1) Apply Behavior filter
  • behavioral (1) Apply behavioral filter
  • Brain calcification (1) Apply Brain calcification filter
  • Epilepsy (1) Apply Epilepsy filter
  • Exercise (1) Apply Exercise filter
  • Hearing (1) Apply Hearing filter
  • Itch (1) Apply Itch filter
  • lncRNA (1) Apply lncRNA filter
  • Neuro development (1) Apply Neuro development filter
  • Other: Apneas (1) Apply Other: Apneas filter
  • Other: Behavorial (1) Apply Other: Behavorial filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Protocols (1) Apply Protocols filter
  • Reward-related learning (1) Apply Reward-related learning filter
  • Sleep (1) Apply Sleep filter
  • Social Behavior (1) Apply Social Behavior filter

Category

  • Publications (171) Apply Publications filter
ER-positive endocervical adenocarcinoma mimicking endometrioid adenocarcinoma in morphology and immunohistochemical profile: A case report of application of HPV RNAscope detection

Medicine

2021 Apr 02

Chen, R;Qin, P;Luo, Q;Yang, W;Tan, X;Cai, T;Jiang, Q;Chen, H;
PMID: 33787580 | DOI: 10.1097/MD.0000000000024927

Usual-type endocervical adenocarcinoma (ECA), high-risk HPV associated, is the most common type of glandular carcinoma in the endocervix. Mucin-depleted usual-type ECA is 1 end of morphological lineage of usual-type ECA and morphologically may show endometrioid features, which could cause diagnostic challenge with uterine endometrioid adenocarcinoma (EEC) and primary endometrioid ECA, especially in the setting of small biopsy and endocervical curettage (ECC). A 37-year-old women presented with dyspareunia for 1 year, showing atypical glandular cell on a liquid-based Pap TCT examination and positive for HPV16 detection. ECC showed EEC in another hospital based on its "endometrioid" morphology and immunohistochemical profiles (ER/PR/PAX8 strongly positive, though p16 also strongly positive). The specimen of hysterectomy in our hospital displayed a lesion confined to the uterine cervix showing the same morphology and immunohistochemical profiles as ECC. Finally, we successfully performed HPV RNAscope and detected high-risk human papilloma virus (HPV) E6/E7 mRNA particles in tumor cells in situ, which warranted usual-type ECA with mucin-depleted feature, a rare deviation of usual-type of ECA. The patient underwent total hysterectomy with lymph node dissection. To date, 14 months after surgery, the patient is well without recurrence or distant metastasis, and undergoes regular reexamination. We report a rare case of mucin-depleted usual-type ECA showing overlapping morphological and immunohistochemical profiles with EEC. The pathological diagnosis was confirmed by high-risk HPV RNAscope detection which is superior than immunohistochemistry to identify usual-type ECA, warranting an important role in assisting the diagnosis of morphological vague cases.
Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method.

Am J Surg Pathol. Dec;36(12):1874–1882.

Bishop JA, Ma XJ, Wang H, Luo Y, Illei PB, Begum S, Taube JM, Koch WM, Westra WH (2012).
PMID: 23060353 | DOI: 10.1097/PAS.0b013e318265fb2b.

Evidence for transcriptional activation of the viral oncoproteins E6 and E7 is regarded as the gold standard for the presence of clinically relevant human papillomavirus (HPV), but detection of E6/E7 mRNA requires RNA extraction and polymerase chain reaction amplification-a challenging technique that is restricted to the research laboratory. The development of RNA in situ hybridization (ISH) probes complementary to E6/E7 mRNA permits direct visualization of viral transcripts in routinely processed tissues and has opened the door for accurate HPV detection in the clinical care setting. Tissue microarrays containing 282 head and neck squamous cell carcinomas from various anatomic subsites were tested for the presence of HPV using p16 immunohistochemistry, HPV DNA ISH, and an RNA ISH assay (RNAscope) targeting high-risk HPV E6/E7 mRNA transcripts. The E6/E7 mRNA assay was also used to test an additional 25 oropharyngeal carcinomas in which the HPV status as recorded in the surgical pathology reports was equivocal due to conflicting detection results (ie, p16 positive, DNA ISH negative). By the E6/E7 mRNA method, HPV was detected in 49 of 282 (17%) HNSCCs including 43 of 77 (56%) carcinomas from the oropharynx, 2 of 3 (67%) metastatic HNSCCs of an unknown primary site, 2 of 7 (29%) carcinomas from the sinonasal tract, and 2 of 195 (1%) carcinomas from other head and neck sites. p16 expression was strongly associated with the presence of HPV E6/E7 mRNA: 46 of 49 HPV-positive tumors exhibited p16 expression, whereas only 22 of 233 HPV-negative tumors were p16 positive (94% vs. 9%, P<0.0001). There was also a high rate of concordance (99%) between the E6/E7 mRNA method and HPV DNA ISH. For the selected group of discordant HNSCCs (p16/HPV DNA), the presence of E6/E7 transcripts was detected in 21 of 25 (84%) cases. The E6/E7 mRNA method confirmed the presence of transcriptionally active HPV-related HNSCC that has a strong predilection for the oropharynx and is strongly associated with high levels of p16 expression. Testing for HPV E6/E7 transcripts by RNA ISH is ideal because it confirms the presence of integrated and transcriptionally active virus, permits visualization of viral transcripts in tissues, and is technically feasible for routine testing in the clinical laboratory.
Structural Similarities Between Neuregulin 1-3 Isoforms Determine their Subcellular Distribution and Signaling Mode in Central Neurons

J Neurosci.

2017 Apr 21

Vullhorst D, Ahmad T, Karavanova I, Keating C, Buonanno A.
PMID: 28432142 | DOI: 10.1523/JNEUROSCI.2630-16.2017

The Neuregulin (NRG) family of ErbB ligands is comprised of numerous variants originating from the use of different genes, alternative promoters and splice variants. NRGs have generally been thought to be transported to axons and presynaptic terminals where they signal via ErbB3/4 receptors in paracrine or juxtacrine mode. However, we recently demonstrated that unprocessed pro-NRG2 accumulates on cell bodies and proximal dendrites, and that NMDAR activity is required for shedding of its ectodomain by metalloproteinases. Here we systematically investigated the subcellular distribution and processing of major NRG isoforms in rat hippocampal neurons. We show that NRG1 isotypes I and II, which like NRG2 are single-pass transmembrane proteins with an Ig-like domain, share the same subcellular distribution and ectodomain shedding properties. We furthermore show that NRG3, like CRD-NRG1, is a dual-pass transmembrane protein that harbors a second transmembrane domain near its amino-terminus. Both NRG3 and CRD-NRG1 cluster on axons through juxtacrine interactions with ErbB4 present on GABAergic interneurons. Interestingly, while single-pass NRGs accumulate as unprocessed pro-forms, axonal puncta of CRD-NRG1 and NRG3 are comprised of processed protein. Mutations of CRD-NRG1 and NRG3 that render them resistant to BACE cleavage, as well as BACE inhibition, result in the loss of axonal puncta and in the accumulation of unprocessed proforms in neuronal soma. Together, these results define two groups of NRGs with distinct membrane topologies and fundamentally different targeting and processing properties in central neurons. The implications of this functional diversity for the regulation of neuronal processes by the NRG/ErbB pathway are discussed.SIGNIFICANCE STATEMENTNumerous Neuregulins are generated through the use of different genes, promoters and alternative splicing, but the functional significance of this evolutionary conserved diversity remains poorly understood. Here we show that NRGs can be categorized by their membrane topologies. Single-pass Neuregulins such as NRG1 types I/II and NRG2 accumulate as unprocessed pro-forms on cell bodies, and their ectodomains are shed by metalloproteinases in response to NMDA receptor activation. By contrast, dual-pass CRD-NRG1 and NRG3 are constitutively processed by BACE and accumulate on axons where they interact with ErbB4 in juxtacrine mode. These findings reveal a previously unknown functional relationship between membrane topology, protein processing and subcellular distribution, and suggest that single- and dual-pass NRGs regulate neuronal functions in fundamentally different ways.

Shank2 Deletion in Parvalbumin Neurons Leads to Moderate Hyperactivity, Enhanced Self-Grooming and Suppressed Seizure Susceptibility in Mice

Front Mol Neurosci.

2018 Jun 19

Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E.
PMID: 29970987 | DOI: 10.3389/fnmol.2018.00209

Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.

Identification of a Human Papillomavirus-Associated Oncogenic miRNA Panel in Human Oropharyngeal Squamous Cell Carcinoma Validated by Bioinformatics Analysis of The Cancer Genome Atlas.

Am J Pathol. 2015 Jan 5. pii: S0002-9440(14)00688-9.

Miller DL, Davis JW, Taylor KH, Johnson J, Shi Z, Williams R, Atasoy U, Lewis JS Jr, Stack MS.
PMID: 25572154 | DOI: 10.1016/j.ajpath.2014.11.018.

High-risk human papillomavirus (HPV) is a causative agent for an increasing subset of oropharyngeal squamous cell carcinomas (OPSCCs), and current evidence supports these tumors as having identifiable risk factors and improved response to therapy. However, the biochemical and molecular alterations underlying the pathobiology of HPV-associated OPSCC (designated HPV+ OPSCC) remain unclear. Herein, we profile miRNA expression patterns in HPV+ OPSCC to provide a more detailed understanding of pathologic molecular events and to identify biomarkers that may have applicability for early diagnosis, improved staging, and prognostic stratification. Differentially expressed miRNAs were identified in RNA isolated from an initial clinical cohort of HPV+/- OPSCC tumors by quantitative PCR-based miRNA profiling. This oncogenic miRNA panel was validated using miRNA sequencing and clinical data from The Cancer Genome Atlas and miRNA in situ hybridization. The HPV-associated oncogenic miRNA panel has potential utility in diagnosis and disease stratification and in mechanistic elucidation of molecular factors that contribute to OPSCC development, progression, and differential response to therapy.
Detection of single mRNAs in individual cells of the auditory system

Hearing Research

2018 Jul 29

Salehi P, Nelson CN, Chen Y, Lei D, Crish SD, Nelson J, Zuo H, Bao J.
PMID: - | DOI: 10.1016/j.heares.2018.07.008

Gene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.

Causal Link of Human Papillomavirus in Barrett Esophagus and Adenocarcinoma: Are We There Yet?

Cancers

2023 Jan 31

Rajendra, S;Sharma, P;
PMID: 36765833 | DOI: 10.3390/cancers15030873

Esophageal cancer is a relatively common malignancy worldwide with a high mortality (5-year survival of <15%). Despite screening, surveillance, improved imaging and treatment, the exponential rise in OAC continues. The strongest risk factors for OAC are chronic heartburn and metaplastic transformation of the lower third of the esophagus (Barrett's esophagus). The risk profile includes Caucasian race, male gender older age, obesity and smoking. Although the tumor risk in BO has been progressively revised downwards, the exponential rise in OAC remains unchecked. This paradox points to an unidentified missing link. Relatively recently, we provided the world's initial data for a strong association of biologically relevant hr-HPV with BD and OAC. Since then, systematic reviews and meta-analysis have documented HPV DNA prevalence rates in OAC of between 13 to 35%. In this review, we provide some evidence for a probable causal relationship between hr-HPV and OAC. This is challenging given the multifactorial etiology and long latency. Increasingly, high-risk HPV (hr-HPV) is regarded as a risk factor for OAC. This discovery will aid identification of a sub-group of high-risk progressors to esophageal cancer by surveillance and the development of effective preventive strategies including vaccination.
Human Papillomavirus 16 E6 Suppresses Transporter Associated with Antigen-Processing Complex in Human Tongue Keratinocyte Cells by Activating Lymphotoxin Pathway

Cancers

2022 Apr 12

Burassakarn, A;Phusingha, P;Yugawa, T;Noguchi, K;Ekalaksananan, T;Vatanasapt, P;Kiyono, T;Pientong, C;
PMID: 35454851 | DOI: 10.3390/cancers14081944

Infection by high-risk human papillomaviruses (hrHPVs), including HPV type 16 (HPV16), is a major risk factor for oral squamous cell carcinomas (OSCCs). However, the pathogenic mechanism by which hrHPVs promote oral carcinogenesis remains to be elucidated. Here, we demonstrated that the suppression of a transporter associated with the antigen-processing complex (TAPs; TAP1 and TAP2), which is a key molecule in the transportation of viral antigenic peptides into MHC class-I cells, is affected by the E6 protein of HPV16. Mechanistically, HPV-mediated immune evasion is principally mediated via the signal-transduction network of a lymphotoxin (LT) pathway, in particular LTα1β2 and LTβR. Our analysis of transcriptomic data from an HNSCC cohort from the Cancer Genome Atlas (TCGA) indicated that expression of TAP genes, particularly TAP2, was downregulated in HPV-infected cases. We further demonstrated that LTα1β2 and LTβR were upregulated, which was negatively correlated with TAP1 and TAP2 expression in HPV-positive clinical OSCC samples. Taken together, our findings imply that HPV16 E6 regulates the machinery of the antigenic peptide-loading system and helps to clarify the role of oncogenic viruses in the context of oral carcinoma.
Vision-dependent specification of cell types and function in the developing cortex

Cell

2022 Jan 20

Cheng, S;Butrus, S;Tan, L;Xu, R;Sagireddy, S;Trachtenberg, JT;Shekhar, K;Zipursky, SL;
PMID: 35063073 | DOI: 10.1016/j.cell.2021.12.022

The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
Human Papillomavirus-Related Head and Neck Squamous Cell Carcinoma Variants

Seminars in Diagnostic Pathology

Samir K. El-Mofty
PMID: 10.1053/j.semdp.2015.02.022

During the last few decades a phenotypically distinct type of head and neck squamous cell carcinoma (SCC), that is etiologically related to human papillomavirus(HPV), has emerged and its prevalence continues to increase. The tumors are site-specific with special predilection for the oropharynx. They are morphologically and molecularly distinct and are responsive to different types of treatment modalities, with excellent clinical outcome, in spite of early lymph node metastasis. Microscopically, the carcinomas are nonkeratinizing SCCs. More recently, other variants that are believed to be etiologically related to HPV are reported. As a result, several clinical and pathologic questions have emerged. Importantly, whether the virus is biologically active in these tumors and involved in their pathogenesis, and second, what are the clinical implications with regard to patient management and outcome in these HPV-related variants. This review is an attempt to answer some of these questions based on information derived from available yet limited number of publications. The variants to be discussed include; nonkeratinizing SCC (NKSCC), NKSCC with maturation (hybrid type), keratinizing SCC (KSSC), basaloid squamous carcinoma (BSCC), undifferentiated carcinoma (UC), papillary SCC (PSCC), small cell carcinoma, adenosquamous carcinoma (AdSCC) and spindle cell (sarcomatoid) carcinoma.
HPV-related oropharyngeal squamous cell carcinomas: a comparison between three diagnostic approaches.

Am J Otolaryngol. 2014 Jan-Feb;35(1):25-32.

Melkane AE, Mirghani H, Aupérin A, Saulnier P, Lacroix L, Vielh P, Casiraghi O, Griscelli F, Temam S.
PMID: 24112760 | DOI: 10.1016/j.amjoto.2013.08.007.

PURPOSE: HPV-related oropharyngeal squamous cell carcinomas clearly represent a growing entity in the head and neck with distinct carcinogenesis, clinico-pathological presentation and survival profile. We aimed to compare the HPV prevalence rates and clinico-pathological correlations obtained with three distinct commonly used HPV detection methods. MATERIALS AND METHODS: p16-immunohistochemistry (IHC), HPV DNA viral load by real-time PCR (qPCR), and HPV genotyping by a reverse hybridization-based line probe assay (INNO-LiPA) were performed on pretreatment formalin-fixed paraffin-embedded tumor samples from 46 patients treated for single primary oropharyngeal carcinomas. RESULTS: Twenty-eight patients (61%) had a p16 overexpression in IHC. Twenty-nine patients (63%) harbored HPV DNA on qPCR. Thirty-four patients (74%) harbored HPV DNA on INNO-LiPA. The concordance analysis revealed a good agreement between both HPV DNA detection methods (κ=0.65); when both tests were positive, the depicted HPV subtypes were always concordant (HPV16 in 27 cases, HPV18 in 1 case). Agreement was moderate between IHC and qPCR (κ=0.59) and fair between IHC and INNO-LiPA (κ=0.22). CONCLUSIONS: Certain highly sensitive methods are able to detect the mere presence of HPV without any carcinogenetic involvement while other more specific tests provide proof of viral transcriptional activity and thus evidence of clinically relevant infections. The use of a stepwise approach allows reducing false positives; p16-immunostaining seems to be an excellent screening test and in situ hybridization may overcome some of the PCR limitations.
Human papillomavirus-related mixed non-keratinizing squamous cell carcinoma of the palatine tonsil with small cell neuroendocrine carcinoma: Report of a case

Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology

2016 Oct 21

Ma Y, Patil N, Gagner JP, Miles BA.
PMID: - | DOI: 10.1016/j.ajoms.2016.09.010

Increased testing for human papillomavirus (HPV) in oropharyngeal carcinomas has broadened the range of HPV-associated malignancies identified at this site. While HPV-related oropharyngeal non-keratinizing squamous cell carcinomas (SCC) are known to have a better prognosis than their non-HPV counterparts, HPV positivity may not alter the aggressive nature of HPV-associated small cell neuroendocrine carcinomas (SCNEC). We report a unique case of a mixed non-keratinizing type HPV-associated tonsillar SCC with SCNEC differentiation, and provide a comparison with the rare reported cases of such mixed carcinomas in the literature. Our patient is only the second such case positive for HPV genotype 18 and the only case in which this HPV-related mixed tonsillar tumor occurred in a patient with small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL). The case discussion supports the concept that HPV positivity does not confer a better prognosis in such mixed non-keratinizing type SCC with SCNEC. Our report also alerts pathologists to the need to evaluate for the possibility of a coexisting neuroendocrine component when oropharyngeal squamous cell carcinoma (OPSCC) is diagnosed, as its presence will affect the patients’ clinical management and prognosis

Pages

  • « first
  • ‹ previous
  • …
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?