Smith, RJ;Liang, M;Loe, AKH;Yung, T;Kim, JE;Hudson, M;Wilson, MD;Kim, TH;
PMID: 36717563 | DOI: 10.1038/s41467-023-36228-2
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation
Cellular and molecular gastroenterology and hepatology
Stokes, K;Nunes, M;Trombley, C;Flôres, DEFL;Wu, G;Taleb, Z;Alkhateeb, A;Banskota, S;Harris, C;Love, OP;Khan, WI;Rueda, L;Hogenesch, JB;Karpowicz, P;
PMID: 34534703 | DOI: 10.1016/j.jcmgh.2021.08.001
Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known.We tested the non-redundant clock gene, Bmal1, in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer.Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod-disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal non-transformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA-sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal.Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors exhibit high Yap (Hippo signaling) activity but exhibit low Wnt activity. Intestinal organoid assays reveal that loss of Bmal1 increases self-renewal in a Yap-dependent manner.Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation.
International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists
Stolnicu, S;Hoang, L;Zhou, Q;Iasonos, A;Terinte, C;Pesci, A;Aviel-Ronen, S;Kiyokawa, T;Alvarado-Cabrero, I;Oliva, E;Park, KJ;Soslow, RA;
PMID: 36044310 | DOI: 10.1097/PGP.0000000000000921
Although both the 2014 and 2020 World Health Organization (WHO) criteria require unequivocal glandular and squamous differentiation for a diagnosis of cervical adenosquamous carcinoma (ASC), in practice, ASC diagnoses are often made in tumors that lack unequivocal squamous and/or glandular differentiation. Considering the ambiguous etiologic, morphologic, and clinical features and outcomes associated with ASCs, we sought to redefine these tumors. We reviewed slides from 59 initially diagnosed ASCs (including glassy cell carcinoma and related lesions) to confirm an ASC diagnosis only in the presence of unequivocal malignant glandular and squamous differentiation. Select cases underwent immunohistochemical profiling as well as human papillomavirus (HPV) testing by in situ hybridization. Of the 59 cases originally classified as ASCs, 34 retained their ASC diagnosis, 9 were reclassified as pure invasive stratified mucin-producing carcinomas, 10 as invasive stratified mucin-producing carcinomas with other components (such as HPV-associated mucinous, usual-type, or ASCs), and 4 as HPV-associated usual or mucinous adenocarcinomas with benign-appearing squamous metaplasia. Two glassy adenocarcinomas were reclassified as poorly differentiated HPV-associated carcinomas based on morphology and immunophenotype. There were no significant immunophenotypic differences between ASCs and pure invasive stratified mucin-producing carcinomas with regard to HPV and other markers including p16 expression. Although limited by a small sample size, survival outcomes seemed to be similar between all groups. ASCs should be diagnosed only in the presence of unequivocal malignant glandular and squamous differentiation. The 2 putative glassy cell carcinomas studied did not meet our criteria for ASC and categorizing them as such should be reconsidered.
Rasmussen, SA;Lewis, JS;Mirabello, L;Bass, S;Yeager, M;Corsten, MJ;Bullock, MJ;
PMID: 35771403 | DOI: 10.1007/s12105-022-01463-4
Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass. The primary lesion and multiple regions of the metastatic mass were assessed with p16 immunohistochemistry, RNA in situ hybridization for high-risk HPV, and HPV16 genome sequencing.The primary lesion was p16 negative, and the metastatic neck mass had large, confluent regions that were either strongly p16 positive or entirely p16 negative. All of these regions were positive for high-risk HPV with identical HPV16 genomes.This unusual case illustrates a potential diagnostic pitfall, and it raises important questions regarding molecular mechanisms and prognostic implications of p16 staining in oropharyngeal squamous cell carcinoma.
The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
Investigative Ophthalmology & Visual Science
Zhu, X;Xu, M;Grachtchouk, M;
RESULTS : Short-term lineage tracing data showed that _Lrig1_, _Lgr6_ and _Axin2_ label basal cells in MG ducts and acini. Long-term lineage tracing results showed that clones of labeled cells persist through multiple rounds of ductal and acinar renewal and give rise to differentiated progeny, identifying _Lrig1_+, _Lgr6_+ and _Axin2+_ ductal and acinar basal cells as self-renewing SCs. Forced expression of GLI2ΔN enhanced basal proliferation, caused expansion of _Lrig1_+ SCs, and lead to replacement of lipid-filled meibocytes by proliferative and poorly differentiated acinar cells. Transcriptional profiling of GLI2ΔN-expressing and control MGs revealed that forced GLI2ΔN expression caused greatly increased expression of _Lrig1_ and _Lgr6_ and suppressed expression of meibocyte differentiation genes.
Martin, M;Vermeiren, S;Bostaille, N;Eubelen, M;Spitzer, D;Vermeersch, M;Profaci, CP;Pozuelo, E;Toussay, X;Raman-Nair, J;Tebabi, P;America, M;De Groote, A;Sanderson, LE;Cabochette, P;Germano, RFV;Torres, D;Boutry, S;de Kerchove d'Exaerde, A;Bellefroid, EJ;Phoenix, TN;Devraj, K;Lacoste, B;Daneman, R;Liebner, S;Vanhollebeke, B;
PMID: 35175798 | DOI: 10.1126/science.abm4459
The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.