Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Heegaard, S;
PMID: 35626161 | DOI: 10.3390/cancers14102558
The pathogenesis of squamous cell neoplasms arising in the lacrimal drainage system is poorly understood, and the underlying genomic drivers for disease development remain unexplored. We aimed to investigate the genomic aberrations in carcinomas arising in the LDS and correlate the findings to human papillomavirus (HPV) status. The HPV analysis was performed using HPV DNA PCR, HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic characterization was performed by targeted DNA sequencing of 523 cancer-relevant genes. Patients with LDS papilloma (n = 17) and LDS carcinoma (n = 15) were included. There was a male predominance (68%) and a median age at diagnosis of 46.0 years (range 27.5-65.5 years) in patients with papilloma and 63.8 years (range 34.0-87.2 years) in patients with carcinoma. Transcriptional activity of the HPV E6/E7 oncogenes was detected in the whole tumor thickness in 12/15 (80%) papillomas (HPV6, 11, 16) and 10/15 (67%) squamous cell carcinomas (SCC) (HPV11: 3/15 (20%) and HPV16: 7/15 (47%)). Pathogenic variants in PIK3CA, FGFR3, AKT1, and PIK3R1, wildtype TP53, p16 overexpression, and deregulated high-risk E6/E7 transcription characterized the HPV16-positive SCC. The deregulated pattern of HPV E6/E7 expression, correlating with HPV DNA presence and p16 positivity, supports a causal role of HPV in a subset of LDS papillomas and carcinomas. The viral and molecular profile of LDS SCC resembles that of other HPV-driven SCC.
Journal of extracellular vesicles
Casadei, L;Sarchet, P;de Faria, FCC;Calore, F;Nigita, G;Tahara, S;Cascione, L;Wabitsch, M;Hornicek, FJ;Grignol, V;Croce, CM;Pollock, RE;
PMID: 36043432 | DOI: 10.1002/jev2.12251
EVs have emerged as an important component in tumour initiation, progression and metastasis. Although notable progresses have been made, the detection of EV cargoes remain significantly challenging for researchers to practically use; faster and more convenient methods are required to validate the EV cargoes, especially as biomarkers. Here we show, the possibility of examining embedded EVs as substrates to be used for detecting DNA amplification through ultrasensitive in situ hybridization (ISH). This methodology allows the visualization of DNA targets in a more direct manner, without time consuming optimization steps or particular expertise. Additionally, formalin-fixed paraffin-embedded (FFPE) blocks of EVs allows long-term preservation of samples, permitting future studies. We report here: (i) the successful isolation of EVs from liposarcoma tissues; (ii) the EV embedding in FFPE blocks (iii) the successful selective, specific ultrasensitive ISH examination of EVs derived from tissues, cell line, and sera; (iv) and the detection of MDM2 DNA amplification in EVs from liposarcoma tissues, cell lines and sera. Ultrasensitive ISH on EVs would enable cargo study while the application of ISH to serum EVs, could represent a possible novel methodology for diagnostic confirmation. Modification of probes may enable researchers to detect targets and specific DNA alterations directly in tumour EVs, thereby facilitating detection, diagnosis, and improved understanding of tumour biology relevant to many cancer types.
Tahara, S;de Faria, FCC;Sarchet, P;Calore, F;Sharick, J;Leight, JL;Casadei, L;Pollock, RE;
PMID: 36763259 | DOI: 10.1007/s13577-023-00865-y
Sarcomas are rare malignancies, the number of reports is limited, and this rarity makes further research difficult even though liposarcoma is one of major sarcomas. 2D cell culture remains an important role in establishing basic tumor biology research, but its various shortcomings and limitations are still of concern, and it is now well-accepted that the behavior of 3D-cultured cells is more reflective of in vivo cellular responses compared to 2D models. This study aimed to establish 3D cell culture of liposarcomas using two different methods: scaffold-based (Matrigel extracellular matrix [ECM] scaffold method) and scaffold-free (Ultra-low attachment [ULA] plate). Lipo246, Lipo224 and Lipo863 cell lines were cultured, and distinctive differences in structures were observed in Matrigel 3D model: Lipo224 and Lipo863 formed spheroids, whereas Lipo246 grew radially without forming spheres. In ULA plate approaches, all cell lines formed spheroids, but Lipo224 and Lipo863 spheroids showed bigger size and looser aggregation than Lipo246. Formalin fixed, paraffin embedded (FFPE) blocks were obtained from all 3D models, confirming the spheroid structures. The expression of MDM2, Ki-67 positivity and MDM2 amplification were confirmed by IHC and DNAscope , respectively. Protein and DNA were extracted from all samples and MDM2 upregulation was confirmed by western blot and qPCR analysis. After treatment with MDM2 inhibitor SAR405838, DDLPS spheroids demonstrated different sensitivity patterns from 2D models. Taken together, we believed that 3D models would have a possibility to provide us a new predictability of efficacy and toxicity, and considered as one important process in in vitro pre-clinical phase prior to moving forward to clinical trials.
HDAC1/2 control proliferation and survival in adult epidermis and pre-basal cell carcinoma via p16 and p53
The Journal of investigative dermatology
Zhu, X;Leboeuf, M;Liu, F;Grachtchouk, M;Seykora, JT;Morrisey, EE;Dlugosz, AA;Millar, SE;
PMID: 34284046 | DOI: 10.1016/j.jid.2021.05.026
HDAC inhibitors show therapeutic promise for skin malignancies; however, the roles of specific HDACs in adult epidermal homeostasis and disease are poorly understood. We find that homozygous epidermal co-deletion of Hdac1 and Hdac2 in adult mouse epidermis causes reduced basal cell proliferation, apoptosis, inappropriate differentiation, and eventual loss of Hdac1/2-null keratinocytes. Hdac1/2 deficient epidermis displays elevated acetylated p53 and increased expression of the senescence gene p16. Loss of p53 partially restores basal proliferation, whereas p16 deletion promotes long-term survival of Hdac1/2-null keratinocytes. In activated GLI2-driven pre-basal cell carcinoma, Hdac1/2 deletion dramatically reduces proliferation and increases apoptosis, and knockout of either p53 or p16 partially rescues both proliferation and basal cell viability. Topical application of the HDAC inhibitor Romidepsin to normal epidermis or GLI2ΔN-driven lesions produces similar defects to genetic Hdac1/2 deletion, and these are partially rescued by loss of p16. These data reveal essential roles for HDAC1/2 in maintaining proliferation and survival of adult epidermal and basal cell carcinoma progenitors and suggest efficacy of therapeutic HDAC1/2 inhibition will depend in part on the mutational status of p53 and p16.
Am J Surg Pathol. 2018 Dec 4.
Kulkarni AS, Wojcik JB, Chougule A, Arora K, Chittampalli Y, Kurzawa P, Mullen JT, Chebib I, Nielsen GP, Rivera MN, Ting DT, Deshpande V.
PMID: 30520819 | DOI: 10.1097/PAS.0000000000001199
The distinction of atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) from its benign counterpart, lipoma, may represent a challenge. MDM2 DNA amplification is used as the gold standard as MDM2 immunohistochemistry lacks specificity and sensitivity. Herein, we investigate the diagnostic utility of MDM2 RNA in situ hybridization (RNA-ISH) and compare the test with MDM2 immunohistochemistry and MDM2 DNA fluorescence in situ hybridization (FISH) in benign and malignant lipomatous neoplasms. We evaluated 109 neoplasms including 27 lipomas, 25 spindle cell lipomas, 32 ALTs/WDLs, and 25 dedifferentiated liposarcomas (DDL). The validation cohort included 14 lipoma-like neoplasms that lacked unequivocal features of ALT/WDL and in which MDM2 immunohistochemistry was either equivocal, negative or falsely positive. Immunohistochemistry, automated RNA-ISH and DNA-FISH for MDM2 were performed. Tumors with diffuse nuclear staining or >50 dots per cell on RNA-ISH were considered positive. All lipomas and lipoma variants were negative for RNA-ISH while all ALTs/WDLs and DDLs were positive. Eighty percent (24/30) and 92% (22/24) of ALTs/WDLs and DDLs were positive for MDM2 immunohistochemistry. Lipomas and its variants were negative for MDM2 amplification; 92% and 100% of ALTs/WDLs and DDLs showed MDM2 DNA amplification. The mean percentage of ALT/WDL tumor cells showing MDM2 RNA-ISH positivity was 73% compared with 24% on MDM2 immunohistochemistry. RNA-ISH correctly classified all 10 ALTs/WDLs and all 4 lipomas in the validation cohort. The performance of MDM2 RNA-ISH and MDM2 DNA-FISH are equivalent. MDM2 RNA-ISH can be of diagnostic value in histologically challenging lipomatous neoplasms. The automated MDM2 RNA-ISH assay should allow for more widespread use of MDM2 testing and for a more sensitive and specific diagnosis of ALT/WDL.
Dhar D, Antonucci L, Nakagawa H, Kim JY, Glitzner E, Caruso S, Shalapour S, Yang L, Valasek MA, Lee S, Minnich K, Seki E, Tuckermann J, Sibilia M, Zucman-Rossi J, Karin M.
PMID: 29894692 | DOI: 10.1016/j.ccell.2018.05.003
How fully differentiated cells that experience carcinogenic insults become proliferative cancer progenitors that acquire multiple initiating mutations is not clear. This question is of particular relevance to hepatocellular carcinoma (HCC), which arises from differentiated hepatocytes. Here we show that one solution to this problem is provided by CD44, a hyaluronic acid receptor whose expression is rapidly induced in carcinogen-exposed hepatocytes in a STAT3-dependent manner. Once expressed, CD44 potentiates AKT activation to induce the phosphorylation and nuclear translocation of Mdm2, which terminates the p53 genomic surveillance response. This allows DNA-damaged hepatocytes to escape p53-induced death and senescence and respond to proliferative signals that promote fixation of mutations and their transmission to daughter cells that go on to become HCC progenitors.
Rasmussen, SA;Lewis, JS;Mirabello, L;Bass, S;Yeager, M;Corsten, MJ;Bullock, MJ;
PMID: 35771403 | DOI: 10.1007/s12105-022-01463-4
Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass. The primary lesion and multiple regions of the metastatic mass were assessed with p16 immunohistochemistry, RNA in situ hybridization for high-risk HPV, and HPV16 genome sequencing.The primary lesion was p16 negative, and the metastatic neck mass had large, confluent regions that were either strongly p16 positive or entirely p16 negative. All of these regions were positive for high-risk HPV with identical HPV16 genomes.This unusual case illustrates a potential diagnostic pitfall, and it raises important questions regarding molecular mechanisms and prognostic implications of p16 staining in oropharyngeal squamous cell carcinoma.
The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.