Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • (-) Remove DUSP6 filter DUSP6 (5)
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope (4) Apply RNAscope filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove Cancer filter Cancer (8)
  • HPV (3) Apply HPV filter

Category

  • Publications (8) Apply Publications filter
Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6

Oncogene

2022 Apr 13

Kidger, AM;Saville, MK;Rushworth, LK;Davidson, J;Stellzig, J;Ono, M;Kuebelsbeck, LA;Janssen, KP;Holzmann, B;Morton, JP;Sansom, OJ;Caunt, CJ;Keyse, SM;
PMID: 35418690 | DOI: 10.1038/s41388-022-02302-0

The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.
Viral and Genomic Drivers of Squamous Cell Neoplasms Arising in the Lacrimal Drainage System

Cancers

2022 May 23

Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Heegaard, S;
PMID: 35626161 | DOI: 10.3390/cancers14102558

The pathogenesis of squamous cell neoplasms arising in the lacrimal drainage system is poorly understood, and the underlying genomic drivers for disease development remain unexplored. We aimed to investigate the genomic aberrations in carcinomas arising in the LDS and correlate the findings to human papillomavirus (HPV) status. The HPV analysis was performed using HPV DNA PCR, HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic characterization was performed by targeted DNA sequencing of 523 cancer-relevant genes. Patients with LDS papilloma (n = 17) and LDS carcinoma (n = 15) were included. There was a male predominance (68%) and a median age at diagnosis of 46.0 years (range 27.5-65.5 years) in patients with papilloma and 63.8 years (range 34.0-87.2 years) in patients with carcinoma. Transcriptional activity of the HPV E6/E7 oncogenes was detected in the whole tumor thickness in 12/15 (80%) papillomas (HPV6, 11, 16) and 10/15 (67%) squamous cell carcinomas (SCC) (HPV11: 3/15 (20%) and HPV16: 7/15 (47%)). Pathogenic variants in PIK3CA, FGFR3, AKT1, and PIK3R1, wildtype TP53, p16 overexpression, and deregulated high-risk E6/E7 transcription characterized the HPV16-positive SCC. The deregulated pattern of HPV E6/E7 expression, correlating with HPV DNA presence and p16 positivity, supports a causal role of HPV in a subset of LDS papillomas and carcinomas. The viral and molecular profile of LDS SCC resembles that of other HPV-driven SCC.
Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling

Nature cancer

2022 Jul 01

Wilding, B;Scharn, D;Böse, D;Baum, A;Santoro, V;Chetta, P;Schnitzer, R;Botesteanu, DA;Reiser, C;Kornigg, S;Knesl, P;Hörmann, A;Köferle, A;Corcokovic, M;Lieb, S;Scholz, G;Bruchhaus, J;Spina, M;Balla, J;Peric-Simov, B;Zimmer, J;Mitzner, S;Fett, TN;Beran, A;Lamarre, L;Gerstberger, T;Gerlach, D;Bauer, M;Bergner, A;Schlattl, A;Bader, G;Treu, M;Engelhardt, H;Zahn, S;Fuchs, JE;Zuber, J;Ettmayer, P;Pearson, M;Petronczki, M;Kraut, N;McConnell, DB;Solca, F;Neumüller, RA;
PMID: 35883003 | DOI: 10.1038/s43018-022-00412-y

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.
Oncogenic Kras G12D specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 + T cells dependent manner

bioRxiv : the preprint server for biology

2023 Feb 18

Mahadevan, KK;McAndrews, KM;LeBleu, VS;Yang, S;Lyu, H;Li, B;Sockwell, AM;Kirtley, ML;Morse, SJ;Moreno Diaz, BA;Kim, MP;Feng, N;Lopez, AM;Guerrero, PA;Sugimoto, H;Arian, KA;Ying, H;Barekatain, Y;Kelly, PJ;Maitra, A;Heffernan, TP;Kalluri, R;
PMID: 36824971 | DOI: 10.1101/2023.02.15.528757

Pancreatic ductal adenocarcinoma (PDAC) is associated with mutations in Kras, a known oncogenic driver of PDAC; and the KRAS G12D mutation is present in nearly half of PDAC patients. Recently, a non-covalent small molecule inhibitor (MRTX1133) was identified with specificity to the Kras G12D mutant protein. Here we explore the impact of Kras G12D inhibition by MRTX1133 on advanced PDAC and its influence on the tumor microenvironment. Employing different orthotopic xenograft and syngeneic tumor models, eight different PDXs, and two different autochthonous genetic models, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 + effector T cells, decreases myeloid infiltration, and reprograms cancer associated fibroblasts. Autochthonous genetic mouse models treated with MRTX1133 leads to regression of both established PanINs and advanced PDAC. Regression of advanced PDAC requires CD8 + T cells and immune checkpoint blockade therapy (iCBT) synergizes with MRTX1133 to eradicate PDAC and prolong overall survival. Mechanistically, inhibition of mutant Kras in advanced PDAC and human patient derived organoids (PDOs) induces Fas expression in cancer cells and facilitates CD8 + T cell mediated death. These results demonstrate the efficacy of MRTX1133 in different mouse models of PDAC associated with reprogramming of stromal fibroblasts and a dependency on CD8 + T cell mediated tumor clearance. Collectively, this study provides a rationale for a synergistic combination of MRTX1133 with iCBT in clinical trials.
A Phase I, Multicenter, Dose-Escalation Study of the Oral Selective FGFR inhibitor Debio 1347 in Patients with Advanced Solid Tumors Harboring FGFR Gene Alterations.

Clin Cancer Res.

2019 Feb 11

Voss MH, Hierro C, Heist RS, Cleary JM, Meric-Bernstam F, Tabernero J, Janku F, Gandhi L, Iafrate AJ, Borger DR, Ishii N, Hu Y, Kirpicheva Y, Nicolas-Metral V, Pokorska-Bocci A, Vaslin Chessex A, Zanna C, Flaherty KT, Baselga J.
PMID: 30745300 | DOI: 10.1158/1078-0432.CCR-18-1959

Abstract

PURPOSE:

To investigate tolerability, efficacy, and pharmacokinetics/-dynamics (PK/PD) of Debio 1347, a selective fibroblast growth factor receptor (FGFR) Inhibitor.

EXPERIMENTAL DESIGN:

This was a first-in-human, multicenter, open-label study in patients with advanced solid tumors harboring FGFR1-3 gene alterations. Eligible patients received oral Debio 1347 at escalating doses once daily until disease progression or intolerable toxicity. Dose limiting toxicities (DLTs) were evaluated during the first 4 weeks on treatment, PK/PD post-first dose and after 4 weeks.

RESULTS:

Seventy-one patients were screened and 58 treated with Debio 1347 at doses from 10 to 150 mg/day. Predominant tumor types were breast and biliary duct cancer, most common gene alterations were FGFR1 amplifications (40%) and mutations in FGFR2 (12%) and FGFR3 (17%); 12 patients (21%) showed FGFR fusions. Five patients at three dose levels had 6 DLTs (dry mouth/eyes, hyperamylasemia, hypercalcemia, hyperbilirubinemia, hyperphosphatemia, stomatitis). The maximum tolerated dose was not reached, but dermatological toxicity became sometimes dose-limiting beyond the DLT period at ≥80 mg/day. Adverse events required dose modifications in 52% of patients, mostly due to dose-dependent, asymptomatic hyperphosphatemia (22%). RECIST responses were seen across tumor types and mechanisms of FGFR activation. Six patients, three with FGFR fusions, demonstrated partial responses, 10 additional patients tumor size regressions of ≤30%. Plasma half-life was 11.5 h. Serum phosphate increased with Debio 1347 plasma levels and confirmed target engagement at doses ≥60 mg/day.

CONCLUSIONS:

Preliminary efficacy was encouraging and tolerability acceptable up to 80 mg/day, which is now used in an extension part of the study.

Combined KRAS G12C and SOS1 inhibition enhances and extends the anti-tumor response in KRAS G12C-driven cancers by addressing intrinsic and acquired resistance

bioRxiv : the preprint server for biology

2023 Jan 23

Thatikonda, V;Lu, H;Jurado, S;Kostyrko, K;Bristow, CA;Bosch, K;Feng, N;Gao, S;Gerlach, D;Gmachl, M;Lieb, S;Jeschko, A;Machado, AA;Marszalek, ED;Mahendra, M;Jaeger, PA;Sorokin, A;Strauss, S;Trapani, F;Kopetz, S;Vellano, CP;Petronczki, M;Kraut, N;Heffernan, TP;Marszalek, JR;Pearson, M;Waizenegger, I;Hofmann, MH;
PMID: 36747713 | DOI: 10.1101/2023.01.23.525210

Efforts to improve the anti-tumor response to KRAS G12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRAS G12C inhibitor (KRAS G12C i) to those induced by KRAS G12C i alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRAS G12C i induces an anti-tumor response stronger than that observed with KRAS G12C i alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRAS G12C i treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRAS G12C i-resistant CRC models. Our findings position KRAS G12C plus SOS1 inhibition therapy as a promising strategy for treating both KRAS G12C -mutated tumors as well as for addressing acquired resistance to KRAS G12C i.
A Case of HPV-Associated Oropharyngeal Squamous Cell Carcinoma with Block-Like, Partial Loss of p16 Expression

Head and neck pathology

2022 Jun 30

Rasmussen, SA;Lewis, JS;Mirabello, L;Bass, S;Yeager, M;Corsten, MJ;Bullock, MJ;
PMID: 35771403 | DOI: 10.1007/s12105-022-01463-4

Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass. The primary lesion and multiple regions of the metastatic mass were assessed with p16 immunohistochemistry, RNA in situ hybridization for high-risk HPV, and HPV16 genome sequencing.The primary lesion was p16 negative, and the metastatic neck mass had large, confluent regions that were either strongly p16 positive or entirely p16 negative. All of these regions were positive for high-risk HPV with identical HPV16 genomes.This unusual case illustrates a potential diagnostic pitfall, and it raises important questions regarding molecular mechanisms and prognostic implications of p16 staining in oropharyngeal squamous cell carcinoma.
Molecular Analysis of HPV-independent Primary Endometrial Squamous Cell Carcinoma Reveals TP53 and CDKN2A comutations: A Clinicopathologic Analysis With Re-evaluation of Diagnostic Criteria

The American journal of surgical pathology

2022 Sep 05

Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970

Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?