The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
Zhao, Q;Yu, CD;Wang, R;Xu, QJ;Dai Pra, R;Zhang, L;Chang, RB;
PMID: 35296859 | DOI: 10.3760/cma.j.cn112151-20210719-00516
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Yang, Y;Wei, Z;Xiong, C;Qian, H;
PMID: 35752810 | DOI: 10.1186/s12985-022-01833-y
Myocardial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reportedly related to disease severity and mortality, attracting attention to exploring relevant pathogenic mechanisms. Limited by insufficient evidence, myocardial injury caused by direct viral invasion of cardiomyocytes (CMs) is not fully understood. Based on recent studies, endosomal dependence can compensate for S protein priming to mediate SARS-CoV-2 infection of CMs, damage the contractile function of CMs, trigger electrical dysfunction, and tip the balance of the renin-angiotensin-aldosterone system to exert a myocardial injury effect. In this review, we shed light on the direct injury caused by SARS-CoV-2 to provide a comprehensive understanding of the cardiac manifestations of coronavirus disease 2019 (COVID-19).
Wu, CT;Lidsky, PV;Xiao, Y;Cheng, R;Lee, IT;Nakayama, T;Jiang, S;He, W;Demeter, J;Knight, MG;Turn, RE;Rojas-Hernandez, LS;Ye, C;Chiem, K;Shon, J;Martinez-Sobrido, L;Bertozzi, CR;Nolan, GP;Nayak, JV;Milla, C;Andino, R;Jackson, PK;
PMID: 36580912 | DOI: 10.1016/j.cell.2022.11.030
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Bixler, SL;Stefan, CP;Jay, AN;Rossi, FD;Ricks, KM;Shoemaker, CJ;Moreau, AM;Zeng, X;Hooper, JW;Dyer, DN;Frick, OM;Koehler, JW;Kearney, BJ;DiPinto, N;Liu, J;Tostenson, SD;Clements, TL;Smith, JM;Johnson, JA;Berrier, KL;Esham, HL;Delp, KL;Coyne, SR;Bloomfield, HA;Kuehnert, PA;Akers, K;Gibson, KM;Minogue, TD;Nalca, A;Pitt, MLM;
PMID: 35632755 | DOI: 10.3390/v14051013
The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.
Gioia, U;Tavella, S;Martínez-Orellana, P;Cicio, G;Colliva, A;Ceccon, M;Cabrini, M;Henriques, AC;Fumagalli, V;Paldino, A;Presot, E;Rajasekharan, S;Iacomino, N;Pisati, F;Matti, V;Sepe, S;Conte, MI;Barozzi, S;Lavagnino, Z;Carletti, T;Volpe, MC;Cavalcante, P;Iannacone, M;Rampazzo, C;Bussani, R;Tripodo, C;Zacchigna, S;Marcello, A;d'Adda di Fagagna, F;
PMID: 36894671 | DOI: 10.1038/s41556-023-01096-x
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.
Chi, H;Wang, L;Liu, C;Cheng, X;Zheng, H;Lv, L;Tan, Y;Zhang, N;Zhao, S;Wu, M;Luo, D;Qiu, H;Feng, R;Fu, W;Zhang, J;Xiong, X;Zhang, Y;Zu, S;Chen, Q;Ye, Q;Yan, X;Hu, Y;Zhang, Z;Yan, R;Yin, J;Lei, P;Wang, W;Lang, G;Shao, J;Deng, Y;Wang, X;Qin, C;
PMID: 36300882 | DOI: 10.1002/smtd.202200932
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape. Herein, a novel immunoglobulin G-variable domains of heavy-chain-only antibody (IgG-VHH) format bsAb derived from a potent human antibody R15-F7 and a humanized nanobody P14-F8-35 are rationally engineered. The resulting bsAb SYZJ001 efficiently neutralizes wild-type SARS-CoV-2 as well as the alpha, beta, gamma, and delta variants, with superior efficacy to its parental antibodies. Cryo-electron microscopy structural analysis reveals that R15-F7 and P14-F8-35 bind to nonoverlapping epitopes within the RBD and sterically hindered ACE2 receptor binding. Most importantly, SYZJ001 shows potent prophylactic and therapeutic efficacy against SARS-CoV-2 in three established mouse models. Collectively, the current results demonstrate that the novel bsAb format is feasible and effective, suggesting great potential as an inspiring antiviral strategy.
Ye, Q;Wu, M;Zhou, C;Lu, X;Huang, B;Zhang, N;Zhao, H;Chi, H;Zhang, X;Ling, D;Zhang, RR;Li, Z;Luo, D;Huang, YJ;Qiu, HY;Song, H;Tan, W;Xu, K;Ying, B;Qin, CF;
PMID: 35882870 | DOI: 10.1038/s41541-022-00478-w
As the world continues to experience the COVID-19 pandemic, seasonal influenza remain a cause of severe morbidity and mortality globally. Worse yet, coinfection with SARS-CoV-2 and influenza A virus (IAV) leads to more severe clinical outcomes. The development of a combined vaccine against both COVID-19 and influenza is thus of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we developed and characterized a novel mRNA vaccine encoding the HA antigen of influenza A (H1N1) virus, termed ARIAV. Then, ARIAV was combined with our COVID-19 mRNA vaccine ARCoV, which encodes the receptor-binding domain (RBD) of the SARS-CoV-2 S protein, to formulate the final combined vaccine, AR-CoV/IAV. Further characterization demonstrated that immunization with two doses of AR-CoV/IAV elicited robust protective antibodies as well as antigen-specific cellular immune responses against SARS-CoV-2 and IAV. More importantly, AR-CoV/IAV immunization protected mice from coinfection with IAV and the SARS-CoV-2 Alpha and Delta variants. Our results highlight the potential of the LNP-mRNA vaccine platform in preventing COVID-19 and influenza, as well as other respiratory diseases.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.
Martin-Navarro, L;de Andrea, C;Sangro, B;Argemi, J;
PMID: 36116717 | DOI: 10.1016/j.jhep.2022.08.039
Liu, S;Selvaraj, P;Sangare, K;Luan, B;Wang, T;
| DOI: 10.1016/j.celrep.2022.111359
Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration; Silver Spring, Maryland, USA, 20993
HISTOLOGICAL FINDINGS IN TRANSBRONCHIAL CRYOBIOPSIES OBTAINED FROM PATIENTS AFTER COVID-19
Culebras, M;Loor, K;Sansano, I;Persiva, Ó;Clofent, D;Polverino, E;Felipe, A;Osorio, J;Muñoz, X;Álvarez, A;Se-COVID-19 team, ;
PMID: 34582842 | DOI: 10.1016/j.chest.2021.09.016