Shi Z, Cassaglia PA, Pelletier NE, Brooks VL.
PMID: PMID: 30628058 | DOI: DOI:10.1113/JP277517
KEY POINTS: ICV insulin increased SNA and baroreflex control of SNA and HR dramatically more in obese male rats; in obese females, the responses were abolished. In obese males, the enhanced LSNA responses were associated with reduced tonic inhibition of LSNA by NPY in the PVN. Yet, PVN NPY injection decreased LSNA similarly in OP/OR/CON rats. Collectively, these results suggest that NPY inputs were decreased. In obese females, NPY inhibition in the PVN was maintained. Moreover, NPY neurons in the ArcN became resistant to the inhibitory effects of insulin. A HFD did not alter arcuate NPY neuronal InsR expression in males or females. Obesity-induced "selective sensitization" of the brain to the sympathoexcitatory effects of insulin and leptin may contribute to elevated basal SNA, and therefore hypertension development, in males with obesity. These data may explain in part why obesity increases SNA less in women compared to men. ABSTRACT: Obesity increases sympathetic nerve activity (SNA) in men, but not women; however, the mechanisms are unknown. We tested if intracerebroventricular insulin infusion increases SNA more in obese male than female rats and if sex differences are mediated by changes in tonic inhibition of SNA by Neuropeptide Y (NPY) in the paraventricular nucleus (PVN). When consuming a high fat diet, obesity prone (OP) rats accrued excess fat, whereas obesity resistant (OR) rats maintained adiposity as in rats eating a control (CON) diet. Insulin increased lumbar SNA (LSNA) similarly in CON/OR males and females under urethane-anesthesia. The LSNA response was magnified in OP males, but abolished in OP females. In males, blockade of PVN NPY Y1 receptors with BIBO3304 increased LSNA in CON/OR rats, but not OP rats. Yet, PVN nanoinjections of NPY decreased LSNA similarly between groups. Thus, tonic PVN NPY inhibition of LSNA may be lost in obese males, due to a decrease in NPY inputs. In contrast, in females, PVN BIBO3304 increased LSNA similarly in OP, OR and CON rats. After insulin, PVN BIBO3304 failed to increase LSNA in CON/OR females, but increased LSNA in OP females, suggesting that with obesity NPY neurons become resistant to the inhibitory effects of insulin. These sex differences were not associated with changes in arcuate NPY neuronal insulin receptor expression. Collectively, these data reveal a marked sex difference in the impact of obesity on insulin's sympathoexcitatory actions and implicate sexually dimorphic changes in NPY inhibition of SNA in the PVN as one mechanism.
Zhang N, Zhang HY, Bi SA, Moran TH and Bi S
PMID: 30902570 | DOI: 10.1016/j.neulet.2019.03.030
Thyrotropin-releasing hormone (TRH) plays an important role in the regulation of energy balance. While the regulation of TRH in the paraventricular nucleus (PVN) in response to changes of energy balance has been well studied, how TRH is regulated in the dorsomedial hypothalamus (DMH) in maintaining energy homeostasis remains unclear. Here, we assessed the effects of food restriction and exercise on hypothalamic Trh expression using Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Sedentary ad lib fed OLETF rats (OLETF-SED) became hyperphagic and obese. These alterations were prevented in OLETF rats with running wheel access (OLETF-RW) or food restriction in which their food was pair-fed (OLETF-PF) to the intake of lean control rats (LETO-SED). Evaluation of hypothalamic gene expression revealed that Trh mRNA expression was increased in the PVN of OLETF-SED rats and normalized in OLETF-RW and OLETF-PF rats compared to LETO-SED rats. In contrast, the expression of Trh in the DMH was decreased in OLETF-SED rats relative to LETO-SED rats. This alteration was reversed in OLETF-RW rats as seen in LETO-SED rats, but food restriction resulted in a significant increase in DMH Trh expression in OLETF-PF rats compared to LETO-SED rats. Strikingly, while Trh mRNA expression was decreased in the PVN of intact rats in response to acute food deprivation, food deprivation resulted in increased expression of Trh in the DMH. Together, these results demonstrate the differential regulation of Trh expression in the PVN and DMH in OLETF rats and suggest that DMH TRH also contributes to hypothalamic regulation of energy balance.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Lysko, DE;Talbot, WS;
PMID: 36384112 | DOI: 10.1016/j.celrep.2022.111669
The signaling mechanisms neurons use to modulate myelination of circuits in the central nervous system (CNS) are only partly understood. Through analysis of isoform-specific neuregulin1 (nrg1) mutants in zebrafish, we demonstrate that nrg1 type II is an important regulator of myelination of two classes of spinal cord interneurons. Surprisingly, nrg1 type II expression is prominent in unmyelinated Rohon-Beard sensory neurons, whereas myelination of neighboring interneurons is reduced in nrg1 type II mutants. Cell-type-specific loss-of-function studies indicate that nrg1 type II is required in Rohon-Beard neurons to signal to other neurons, not oligodendrocytes, to modulate spinal cord myelination. Together, our data support a model in which unmyelinated neurons express Nrg1 type II proteins to regulate myelination of neighboring neurons, a mode of action that may coordinate the functions of unmyelinated and myelinated neurons in the CNS.
Acta pharmacologica Sinica
Chen, ZJ;Su, CW;Xiong, S;Li, T;Liang, HY;Lin, YH;Chang, L;Wu, HY;Li, F;Zhu, DY;Luo, CX;
PMID: 36460834 | DOI: 10.1038/s41401-022-01024-z
Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022
Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular projections from the preoptic area of the hypothalamus (POA) to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the POA and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor.SIGNIFICANCEDaily heterotherms such as mice employ torpor to cope with environments in which the supply of metabolic fuel is not sufficient for the maintenance of normothermia. Daily torpor involves reductions in body temperature, as well as active suppression of heart rate and metabolism. How the central nervous system controls this profound deviation from normal homeostasis is not known, but a projection from the preoptic area to the dorsomedial hypothalamus has recently been implicated. We demonstrate that the dorsomedial hypothalamus contains neurons that are active during torpor. Activity in these neurons promotes torpor entry and maintenance, but their activation alone does not appear to be sufficient for torpor entry.
Journal of cellular physiology
Zhang, CL;Lin, YZ;Wu, Q;Yan, C;Wong, MW;Zeng, F;Zhu, P;Bowes, K;Lee, K;Zhang, X;Song, ZY;Lin, S;Shi, YC;
PMID: 35312067 | DOI: 10.1002/jcp.30719
Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension. Here, we demonstrate that wild-type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY-GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain-derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV-Cre recombinase into the Arc only of the NPY-targeted mutant mice carrying a loxP-flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt-dependent blood pressure. In summary, our study uncovers an important Arc NPY-originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.
Harris NA, Isaac AT, Günther A, Merkel K, Melchior J, Xu M, Eguakun E, Perez R, Nabit BP, Flavin S, Gilsbach R, Shonesy B, Hein L, Abel T, Baumann A, Matthews R, Centanni SW, Winder DG.
PMID: 30150361 | DOI: 10.1523/JNEUROSCI.0963-18.2018
Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress-responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress yet minimally affects relapse, potentially due to competing actions in the brain. Here we show that heteroceptor α2A-ARs postsynaptically enhance dorsal BNST (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, as inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons, and its activation elicits anxiety-like behavior in the elevated plus maze. Together, this data provides a framework for elucidating cell-specific actions of GPCR signaling and provides a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENTStress impacts the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here we show that guanfacine increases dBNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation (HCN) channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest 1) that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons, and 2) these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting care must be taken regarding interpretation of data obtained with these tools.
Shi, Z;Stornetta, DS;Stornetta, RL;Brooks, VL;
PMID: 34937769 | DOI: 10.1523/ENEURO.0404-21.2021
The arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII); however, the cellular mechanisms and downstream neurocircuitry are unclear. Here we show that ArcN AngII increases AP in female rats via two phases, both of which are mediated via activation of AngII type 1 receptors (AT1aR): initial vasopressin-induced vasoconstriction, followed by slowly developing increases in sympathetic nerve activity (SNA) and heart rate (HR). In male rats, ArcN AngII evoked a similarly slow increase in SNA, but the initial pressor response was variable. In females, the effects of ArcN AngII varied during the estrus cycle, with significant increases in SNA, HR, and AP occurring during diestrus and estrus, but only increased AP during proestrus. Pregnancy markedly increased the expression of AT1aR in the ArcN with parallel substantial AngII-induced increases in SNA and MAP. In both sexes, the sympathoexcitation relied on suppression of tonic ArcN sympathoinhibitory Neuropeptide Y inputs, and activation of pro-opiomelanocortin (POMC) projections, to the paraventricular nucleus (PVN). Few or no NPY or POMC neurons expressed the AT1aR, suggesting that AngII increases AP and SNA at least in part indirectly via local interneurons, which express tyrosine hydroxylase (TH) and VGat (i.e. GABAergic). ArcN TH neurons release GABA locally, and central AT1aR and TH neurons mediate stress responses; therefore, we propose that TH AT1aR neurons are well situated to locally coordinate the regulation of multiple modalities within the ArcN in response to stress.SIGNIFICANCEThe arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII). Here we show that ArcN AngII activates AT1aR to increase AP in male and female rats by slowly increasing sympathetic nerve activity. In females, ArcN AngII also evoked an initial pressor response mediated by vasopressin-induced vasoconstriction. Pregnant and estrus females responded more than males, in association with higher ArcN AT1aR expression. AT1aR were identified in ArcN interneurons that express tyrosine hydroxylase (TH) and GABA. Since brain AT1aR and TH mediate stress responses, ArcN AT1aR TH neurons are well situated to locally coordinate autonomic, hormonal, and behavioral responses to stress.
Lee SJ, Sanchez-Watts G, Krieger JP, Pignalosa A, Norell PN, Cortella A, Pettersen KG, Vrdoljak D, Hayes MR, Kanoski S, Langhans W, Watts AG.
PMID: - | DOI: 10.1016/j.molmet.2018.03.008
Abstract
Objective
Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function.
Methods
We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization.
Results
GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies.
Conclusions
Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity.
Chen YW, Das M, Oyarzabal EA, Cheng Q, Plummer NW, Smith KG, Jones GK, Malawsky D, Yakel JL, Shih YI, Jensen P.
PMID: 30214043 | DOI: 10.1038/s41380-018-0245-8
Noradrenergic signaling plays a well-established role in promoting the stress response. Here we identify a subpopulation of noradrenergic neurons, defined by developmental expression of Hoxb1, that has a unique role in modulating stress-related behavior. Using an intersectional chemogenetic strategy, in combination with behavioral and physiological analyses, we show that activation of Hoxb1-noradrenergic (Hoxb1-NE) neurons decreases anxiety-like behavior and promotes an active coping strategy in response to acute stressors. In addition, we use cerebral blood volume-weighted functional magnetic resonance imaging to show that chemoactivation of Hoxb1-NE neurons results in reduced activity in stress-related brain regions, including the bed nucleus of the stria terminalis, amygdala, and locus coeruleus. Thus, the actions of Hoxb1-NE neurons are distinct from the well-documented functions of the locus coeruleus in promoting the stress response, demonstrating that the noradrenergic system contains multiple functionally distinct subpopulations.
McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG, O'Hara DM, Brotchie JM, Koprich JB, Lozano AM, Kalia LV, Kalia SK
PMID: 32059750 | DOI: 10.1186/s40478-020-0894-0
Parkinson's disease is a progressive neurodegenerative disorder characterised by the accumulation of misfolded ?-synuclein in selected brain regions, including the substantia nigra pars compacta (SNpc), where marked loss of dopaminergic neurons is also observed. Yet, the relationship between misfolded ?-synuclein and neurotoxicity currently remains unclear. As the principal route for degradation of misfolded proteins in mammalian cells, the ubiquitin-proteasome system (UPS) is critical for maintenance of cellular proteostasis. Misfolded ?-synuclein impairs UPS function and contributes to neuronal death in vitro. Here, we examine its effects in vivo using adeno-associated viruses to co-express A53T ?-synuclein and the ubiquitinated reporter protein UbG76V-GFP in rat SNpc. We found that ?-synuclein over-expression leads to early-onset catalytic impairment of the 26S proteasome with associated UPS dysfunction, preceding the onset of behavioural deficits and dopaminergic neurodegeneration. UPS failure in dopaminergic neurons was also associated with selective accumulation of ?-synuclein phosphorylated at the serine 129 residue, which has previously been linked to increased neurotoxicity. Our study highlights a role for ?-synuclein in disturbing proteostasis which may contribute to neurodegeneration in vivo