Senger S, Sapone A, Fiorentino MR, Mazzarella G, Lauwers GY, Fasano A.
PMID: 26649570 | DOI: 10.1371/journal.pone.0144634
Abstract
BACKGROUND:
In celiac disease (CD), intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh)/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.
METHODS AND FINDINGS:
Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC) and 24 patients with diagnosed acute celiac disease (A-CD) intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5), an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH) and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.
CONCLUSIONS:
Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.
De Cian MC, Gregoire EP, Le Rolle M, Lachambre S, Mondin M, Bell S, Guigon CJ, Chassot AA, Chaboissier MC
PMID: 32341451 | DOI: 10.1038/s41418-020-0547-7
R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/?-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility
Sci Rep. 2015 Mar 2;5:8654.
Baker AM, Graham TA, Elia G, Wright NA, Rodriguez-Justo M.
PMID: 25728748 | DOI: 10.1038/srep08654
LGR5 is known to be a stem cell marker in the murine small intestine and colon, however the localization of LGR5 in human adenoma samples has not been examined in detail, and previous studies have been limited by the lack of specific antibodies. Here we used in situ hybridization to specifically examine LGR5 mRNA expression in a panel of human adenoma and carcinoma samples (n = 66). We found that a small number of cells express LGR5 at the base of normal colonic crypts. We then showed that conventional adenomas widely express high levels of LGR5, and there is no evidence of stereotypic cellular hierarchy. In contrast, serrated lesions display basal localization of LGR5, and the cellular hierarchy resembles that of a normal crypt. Moreover, ectopic crypts found in traditional serrated adenomas show basal LGR5 mRNA, indicating that they replicate the stem cell organization of normal crypts with the development of a cellular hierarchy. These data imply differences in the stem cell dynamics between the serrated and conventional pathways of colorectal carcinogenesis. Furthermore we noted high LGR5 expression in invading cells, with later development of a stem cell niche in adenocarcinomas of all stages.
Am J Pathol. 2014 Dec 26. pii: S0002-9440(14)00675-0.
Katano T, Ootani A, Mizoshita T, Tanida S, Tsukamoto H, Ozeki K, Kataoka H, Joh T.
PMID: 25546442 | DOI: 10.1016/j.ajpath.2014.11.007.
Stem cells are influenced by a microenvironmental niche that includes mesenchymal cells. We established a novel long-term method for primary mouse glandular stomach culture with mesenchymal myofibroblasts to investigate gastric epithelial-mesenchymal interactions. A gastric mesenchymal myofibroblast (GMF) cell line was established from mouse glandular stomach. Glandular stomach cells from neonatal mice and GMF cells were co-cultured in a collagen gel. Cultured stomach cells yielded expanding sphere-like structures. In the GMF co-culture system, the number and size of gastrospheres were increased compared with control cultures (P = 0.009 and 0.008, respectively). Immunohistochemistry showed cells positive for human gastric mucin, HIK1083, and chromogranin A, indicating differentiation into surface mucous cells, mucous neck cells, and enteroendocrine cells, respectively. RNA in situ hybridization for Lgr5 showed Lgr5+ stem cells in the cultured gastrospheres. Lgr5+ cells were observed persistently in the epithelium of gastrospheres in the GMF co-culture system for 2 months. GMFs allowed the cultured gastric epithelium to maintain active proliferation similar to that seen in vivo. Real-time quantitative RT-PCR showed that Gas1 expression was higher in GMFs (P = 0.0445), and Hoxc8, Notch1, and Sox10 expressions were higher in intestinal mesenchymal myofibroblasts (P = 0.0003, 0.0143, and 0.0488, respectively). We show the potential role of GMFs in sustaining Lgr5+ stem cell activity and affecting normal gastric epithelial differentiation and proliferation.
Brain Struct Funct. 2018 Oct 28.
Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE.
PMID: 30368554 | DOI: 10.1007/s00429-018-1763-5
In mammals, the extended amygdala is a neural hub for social and emotional information processing. In the rat, the extended amygdala receives inhibitory GABAergic projections from the nucleus incertus (NI) in the pontine tegmentum. NI neurons produce the neuropeptide relaxin-3, which acts via the Gi/o-protein-coupled receptor, RXFP3. A putative role for RXFP3 signalling in regulating social interaction was investigated by assessing the effect of intracerebroventricular infusion of the RXFP3 agonist, RXFP3-A2, on performance in the 3-chamber social interaction paradigm. Central RXFP3-A2, but not vehicle, infusion, disrupted the capacity to discriminate between a familiar and novel conspecific subject, but did not alter differentiation between a conspecific and an inanimate object. Subsequent studies revealed that agonist-infused rats displayed increased phosphoERK(pERK)-immunoreactivity in specific amygdaloid nuclei at 20 min post-infusion, with levels similar to control again after 90 min. In parallel, we used immunoblotting to profile ERK phosphorylation dynamics in whole amygdala after RXFP3-A2 treatment; and multiplex histochemical labelling techniques to reveal that after RXFP3-A2 infusion and social interaction, pERK-immunopositive neurons in amygdala expressed vesicular GABA-transporter mRNA and displayed differential profiles of RXFP3 and oxytocin receptor mRNA. Overall, these findings demonstrate that central relaxin-3/RXFP3 signalling can modulate social recognition in rats via effects within the amygdala and likely interactions with GABA and oxytocin signalling.
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802.
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T.
PMID: 25706875 | DOI: 10.1038/nm.3802
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.
Nakajima T, Uehara T, Kobayashi Y, Kinugawa Y, Yamanoi K, Maruyama Y, Suga T, Ota H.
PMID: 30043418 | DOI: 10.1111/pin.12707
LGR5 is expressed in various tumors and has been identified as a putative intestinal stem cell marker. Here we investigated LGR5 expression in colorectal neuroendocrine neoplasms and analyzed the correlation with pathological characteristics. We evaluated the clinicopathological features of 8 neuroendocrine tumor (NET) grade 1 (NET G1), 4 NET Grade 2 (NET G2), and 8 NET Grade 3 (NET G3; also termed neuroendocrine carcinoma, or NEC) cases. We examined LGR5 expression using an RNAscope, a newly developed RNA in situ hybridization technique, with a tissue microarray of the neuroendocrine neoplasm samples. LGR5 staining in individual tumor cells was semi-quantitatively scored using an H-score scale. We also performed a combination of LGR5 RNA in situ hybridization and synaptophysin immunohistochemistry. All cases contained tumor cells with some LGR5-positive dots. For all cases, H-scores showed a positive correlation with nuclear beta-catenin expression. In the NEC group, there was a strong positive correlation between H-score and beta-catenin expression. Our findings suggest that LGR5 may serve as a stem cell marker in NEC, as is the case in colon adenocarcinoma. The positive correlation between H-score and beta-catenin expression suggests that LGR5 expression might be affected by beta-catenin expression in neuroendocrine neoplasms and especially in NEC.
Development (Cambridge, England)
Imaimatsu, K;Hiramatsu, R;Tomita, A;Itabashi, H;Kanai, Y;
PMID: 37376880 | DOI: 10.1242/dev.201660
Temporal transcription profiles of fetal testes with Sertoli cell ablation were examined in 4-day culture using a diphtheria toxin (DT)-dependent cell knockout system in AMH-TRECK transgenic (Tg) mice. RNA analysis revealed that ovarian-specific genes, including Foxl2, were ectopically expressed in DT-treated Tg testis explants initiated at embryonic days 12.5-13.5. FOXL2-positive cells were ectopically observed in two testicular regions-near the testicular surface epithelia and around its adjacent mesonephros. The surface FOXL2-positive cells, together with ectopic expression of Lgr5 and Gng13 (markers of ovarian cords), were derived from the testis epithelia/subepithelia, whereas another FOXL2-positive population was the 3βHSD-negative stroma near the mesonephros. In addition to high expression of Fgfr1/Fgfr2 and heparan sulfate proteoglycan (a reservoir for FGF ligand) in these two sites, exogenous FGF9 additives repressed DT-dependent Foxl2 upregulation in Tg testes. These findings imply retention of Foxl2 inducibility in the surface epithelia and peri-mesonephric stroma of the testicular parenchyma, in which certain paracrine signals, including FGF9 derived from fetal Sertoli cells, repress feminization in these two sites of the early fetal testis.
Zhang, L;Koller, J;Gopalasingam, G;Qi, Y;Herzog, H;
PMID: 35691527 | DOI: 10.1016/j.molmet.2022.101525
Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons.We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons.Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control.NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.
Journal of gastroenterology
Sui, Y;Hoshi, N;Ohgaki, R;Kong, L;Yoshida, R;Okamoto, N;Kinoshita, M;Miyazaki, H;Ku, Y;Tokunaga, E;Ito, Y;Watanabe, D;Ooi, M;Shinohara, M;Sasaki, K;Zen, Y;Kotani, T;Matozaki, T;Tian, Z;Kanai, Y;Kodama, Y;
PMID: 36739585 | DOI: 10.1007/s00535-023-01960-5
Amino acid transporters play an important role in supplying nutrition to cells and are associated with cell proliferation. L-type amino acid transporter 1 (LAT1) is highly expressed in many types of cancers and promotes tumor growth; however, how LAT1 affects tumor development is not fully understood.To investigate the role of LAT1 in intestinal tumorigenesis, mice carrying LAT1 floxed alleles that also expressed Cre recombinase from the promoter of gene encoding Villin were crossed to an ApcMin/+ background (LAT1fl/fl; vil-cre; ApcMin/+), which were subject to analysis; organoids derived from those mice were also analyzed.This study showed that LAT1 was constitutively expressed in normal crypt base cells, and its conditional deletion in the intestinal epithelium resulted in fewer Paneth cells. LAT1 deletion reduced tumor size and number in the small intestine of ApcMin/+ mice. Organoids derived from LAT1-deleted ApcMin/+ intestinal crypts displayed fewer spherical organoids with reduced Wnt/β-catenin target gene expression, suggesting a low tumor-initiation capacity. Wnt3 expression was decreased in the absence of LAT1 in the intestinal epithelium, suggesting that loss of Paneth cells due to LAT1 deficiency reduced the risk of tumor initiation by decreasing Wnt3 production.LAT1 affects intestinal tumor development in a cell-extrinsic manner through reduced Wnt3 expression in Paneth cells. Our findings may partly explain how nutrient availability can affect the risk of tumor development in the intestines.
Biological Psychiatry Global Open Science
Funayama, Y;Li, H;Ishimori, E;Kawatake-Kuno, A;Inaba, H;Yamagata, H;Seki, T;Nakagawa, S;Watanabe, Y;Murai, T;Oishi, N;Uchida, S;
| DOI: 10.1016/j.bpsgos.2021.12.009
Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. As treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We utilized the large variance in behavioral responses to chronic treatment with multiple class of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and employed virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim test, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety behaviors. Results Cocaine- and amphetamine-regulated transcript peptide (Cartpt) expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic neurons of the anterior cingulate cortex (aCC) led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the aCC is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.