Niec, RE;Chu, T;Schernthanner, M;Gur-Cohen, S;Hidalgo, L;Pasolli, HA;Luckett, KA;Wang, Z;Bhalla, SR;Cambuli, F;Kataru, RP;Ganesh, K;Mehrara, BJ;Pe'er, D;Fuchs, E;
PMID: 35728595 | DOI: 10.1016/j.stem.2022.05.007
Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.
Bozzi F, Mogavero A, Varinelli L, Belfiore A, Manenti G, Caccia C, Volpi CC, Beznoussenko GV, Milione M, Leoni V, Gloghini A, Mironov AA, Leo E, Pilotti S, Pierotti MA, Bongarzone I, Gariboldi M.
PMID: 28114961 | DOI: 10.1186/s13046-016-0475-z
Abstract
BACKGROUND:
Strategies aimed at obtaining a complete cytoreduction are needed to improve long-term survival for patients with colorectal cancer peritoneal carcinomatosis (CRC-pc).
METHODS:
We established organoid models from peritoneal metastases of two naïve CRC patients. A standard paraffin inclusion was conducted to compare their 3D structure and immunohistochemical profile with that of the corresponding surgical samples. RNA expression levels of the CRC stem cell marker LGR5 was measured by in situ hybridization. The secretome of organoids was profiled by mass spectrometry. Energy homeostasis of organoids was interfered with 4-IPP and metformin. Biochemical and metabolic changes after drug treatments were investigated by western blot and mass spectrometry. Mitochondria impairment was evaluated by electron microscopy and mitotraker staining.
RESULTS:
The two organoids recapitulated their corresponding clinical samples in terms of 3D structure and immmunoistochemical profile and were positive for the cancer stem cells marker LGR5. Proteomic analyses of organoids highlighted their strong dependence on energy producing pathways, which suggest that their targeting could be an effective therapeutic approach. To test this hypothesis, we treated organoids with two drugs that target metabolism acting on AMP-activated protein kinase (AMPK), the main regulator of cellular energy homeostasis, which may act as metabolic tumour suppressor in CRC. Organoids were treated with 4-IPP, an inhibitor of MIF/CD74 signalling axis which activates AMPK function, or metformin that inhibits mitochondrial respiratory chain complex I. As a new finding we observed that treatment with 4-IPP downregulated AMPK signalling activity, reduced AKT phosphorylation and activated a JNK-mediated stress-signalling response, thus generating mitochondrial impairment and cell death. Metformin treatment enhanced AMPK activation, decreasing the activity of the anabolic factors ribosomal protein S6 and p4EBP-1 and inducing mitochondrial depolarization.
CONCLUSION:
We provide evidence that the modulation of AMPK activity may be a strategy for targeting metabolism of CRC-pc organoids.
The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
Huang, XT;Li, T;Li, T;Xing, S;Tian, JZ;Ding, YF;Cai, SL;Yang, YS;Wood, C;Yang, JS;Yang, WJ;
PMID: 36516755 | DOI: 10.1016/j.celrep.2022.111796
Intestinal epithelial replenishment is fueled by continuously dividing intestinal stem cells (ISCs) resident at the crypt niche. However, the cell type(s) enabling replenishment upon damage and subsequent loss of whole crypts remain largely unclear. Using Set domain-containing protein 4 (Setd4), we identify a small population with reserve stem cell characteristics in the mouse intestine. Upon irradiation-induced injury, Setd4-expressing (Setd4+) cells survive radiation exposure and then activate to produce Sca-1-expressing cell types to restore the epithelial wall and regenerate crypts de novo via crypt fission. Setd4+ cells are confirmed to originate from the early fetal period, subsequently contributing to the development of embryonic gut and the establishment of postnatal crypts. Setd4+ cells are therefore represented as both originators and key regenerators of the intestine.
Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL.
PMID: 28384468 | DOI: 10.1016/j.neuron.2017.03.017
The basal ganglia (BG) integrate inputs from diverse sensorimotor, limbic, and associative regions to guide action-selection and goal-directed behaviors. The entopeduncular nucleus (EP) is a major BG output nucleus and has been suggested to channel signals from distinct BG nuclei to target regions involved in diverse functions. Here we use single-cell transcriptional and molecular analyses to demonstrate that the EP contains at least three classes of projection neurons-glutamate/GABA co-releasing somatostatin neurons, glutamatergic parvalbumin neurons, and GABAergic parvalbumin neurons. These classes comprise functionally and anatomically distinct output pathways that differentially affect EP target regions, such as the lateral habenula (LHb) and thalamus. Furthermore, LHb- and thalamic-projecting EP neurons are differentially innervated by subclasses of striatal and pallidal neurons. Therefore, we identify previously unknown subdivisions within the EP and reveal the existence of cascading, molecularly distinct projections through striatum and globus pallidus to EP targets within epithalamus and thalamus.
Bowen, AJ;Huang, YW;Chen, JY;Pauli, JL;Campos, CA;Palmiter, RD;
PMID: 36639374 | DOI: 10.1038/s41467-023-35826-4
Adaptive behaviors arise from an integration of current sensory context and internal representations of past experiences. The central amygdala (CeA) is positioned as a key integrator of cognitive and affective signals, yet it remains unknown whether individual populations simultaneously carry current- and future-state representations. We find that a primary nociceptive population within the CeA of mice, defined by CGRP-receptor (Calcrl) expression, receives topographic sensory information, with spatially defined representations of internal and external stimuli. While Calcrl+ neurons in both the rostral and caudal CeA respond to noxious stimuli, rostral neurons promote locomotor responses to externally sourced threats, while caudal CeA Calcrl+ neurons are activated by internal threats and promote passive coping behaviors and associative valence coding. During associative fear learning, rostral CeA Calcrl+ neurons stably encode noxious stimulus occurrence, while caudal CeA Calcrl+ neurons acquire predictive responses. This arrangement supports valence-aligned representations of current and future threats for the generation of adaptive behaviors.
Zhao, L;Song, W;Chen, YG;
PMID: 35830795 | DOI: 10.1016/j.celrep.2022.111053
After gut tube patterning in early embryos, the cellular and molecular changes of developing stomach and intestine remain largely unknown. Here, combining single-cell RNA sequencing and spatial RNA sequencing, we construct a spatiotemporal transcriptomic landscape of the mouse stomach and intestine during embryonic days E9.5-E15.5. Several subpopulations are identified, including Lox+ stomach mesenchyme, Aldh1a3+ small-intestinal mesenchyme, and Adamdec1+ large-intestinal mesenchyme. The regionalization and heterogeneity of both the epithelium and the mesenchyme can be traced back to E9.5. The spatiotemporal distributions of cell clusters and the mesenchymal-epithelial interaction analysis indicate that a coordinated development of the epithelium and mesenchyme contribute to the stomach regionalization, intestine segmentation, and villus formation. Using the gut tube-derived organoids, we find that the cell fate of the foregut and hindgut can be switched by the regional niche factors, including fibroblast growth factors (FGFs) and retinoic acid (RA). This work lays a foundation for further dissection of the mechanisms governing this process.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Vaughan-Shaw, PG;Blackmur, JP;Grimes, G;Ooi, LY;Ochocka-Fox, AM;Dunbar, K;von Kriegsheim, A;Rajasekaran, V;Timofeeva, M;Walker, M;Svinti, V;Din, FVN;Farrington, SM;Dunlop, MG;
PMID: 34918389 | DOI: 10.1096/fj.202101430RR
Vitamin D deficiency is associated with risk of several common cancers, including colorectal cancer (CRC). Here we have utilized patient derived epithelial organoids (ex vivo) and CRC cell lines (in vitro) to show that calcitriol (1,25OHD) increased the expression of the CRC tumor suppressor gene, CDH1, at both the transcript and protein level. Whole genome expression analysis demonstrated significant differential expression of a further six genes after 1,25OHD treatment, including genes with established links to carcinogenesis GADD45, EFTUD1 and KIAA1199. Furthermore, gene ontologies relevant to carcinogenesis were enriched by 1,25OHD treatment (e.g., 'regulation of Wnt signaling pathway', 'regulation of cell death'), with common enriched processes across in vitro and ex vivo cultures including 'negative regulation of cell proliferation', 'regulation of cell migration' and 'regulation of cell differentiation'. Our results identify genes and pathways that are modifiable by calcitriol that have links to CRC tumorigenesis. Hence the findings provide potential mechanism to the epidemiological and clinical trial data indicating a causal association between vitamin D and CRC. We suggest there is strong rationale for further well-designed trials of vitamin D supplementation as a novel CRC chemopreventive and chemotherapeutic agent.
Cascade diversification directs generation of neuronal diversity in the hypothalamus
Zhang, YH;Xu, M;Shi, X;Sun, XL;Mu, W;Wu, H;Wang, J;Li, S;Su, P;Gong, L;He, M;Yao, M;Wu, QF;
PMID: 33887179 | DOI: 10.1016/j.stem.2021.03.020
The hypothalamus contains an astounding heterogeneity of neurons that regulate endocrine, autonomic, and behavioral functions. However, its molecular developmental trajectory and origin of neuronal diversity remain unclear. Here, we profile the transcriptome of 43,261 cells derived from Rax+ hypothalamic neuroepithelium to map the developmental landscape of the mouse hypothalamus and trajectory of radial glial cells (RGCs), intermediate progenitor cells (IPCs), nascent neurons, and peptidergic neurons. We show that RGCs adopt a conserved strategy for multipotential differentiation but generate Ascl1+ and Neurog2+ IPCs. Ascl1+ IPCs differ from their telencephalic counterpart by displaying fate bifurcation, and postmitotic nascent neurons resolve into multiple peptidergic neuronal subtypes. Clonal analysis further demonstrates that single RGCs can produce multiple neuronal subtypes. Our study reveals that multiple cell types along the lineage hierarchy contribute to fate diversification of hypothalamic neurons in a stepwise fashion, suggesting a cascade diversification model that deconstructs the origin of neuronal diversity.
Joost S, Zeisel A, Jacob T, Sun X, La Manno G, Lönnerberg P, Linnarsson S, Kasper M.
PMID: 27641957 | DOI: 10.1016/j.cels.2016.08.010
The murine epidermis with its hair follicles represents an invaluable model system for tissue regeneration and stem cell research. Here we used single-cell RNA-sequencing to reveal how cellular heterogeneity of murine telogen epidermis is tuned at the transcriptional level. Unbiased clustering of 1,422 single-cell transcriptomes revealed 25 distinct populations of interfollicular and follicular epidermal cells. Our data allowed the reconstruction of gene expression programs during epidermal differentiation and along the proximal-distal axis of the hair follicle at unprecedented resolution. Moreover, transcriptional heterogeneity of the epidermis can essentially be explained along these two axes, and we show that heterogeneity in stem cell compartments generally reflects this model: stem cell populations are segregated by spatial signatures but share a common basal-epidermal gene module. This study provides an unbiased and systematic view of transcriptional organization of adult epidermis and highlights how cellular heterogeneity can be orchestrated in vivo to assure tissue homeostasis.
Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ.
PMID: 29556067 | DOI: 10.1038/s41467-018-03426-2
Many epithelial stem cell populations follow a pattern of stochastic stem cell divisions called 'neutral drift'. It is hypothesised that neutral competition between stem cells protects against the acquisition of deleterious mutations. Here we use a Porcupine inhibitor to reduce Wnt secretion at a dose where intestinal homoeostasis is maintained despite a reduction of Lgr5+ stem cells. Functionally, there is a marked acceleration in monoclonal conversion, so that crypts become rapidly derived from a single stem cell. Stem cells located further from the base are lost and the pool of competing stem cells is reduced. We tested whether this loss of stem cell competition would modify tumorigenesis. Reduction of Wnt ligand secretion accelerates fixation of Apc-deficient cells within the crypt leading to accelerated tumorigenesis. Therefore, ligand-based Wnt signalling influences the number of stem cells, fixation speed of Apc mutations and the speed and likelihood of adenoma formation.
Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism
Borgmann, D;Ciglieri, E;Biglari, N;Brandt, C;Cremer, AL;Backes, H;Tittgemeyer, M;Wunderlich, FT;Brüning, JC;Fenselau, H;
PMID: 34043943 | DOI: 10.1016/j.cmet.2021.05.002
Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.