ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Kidney international
2021 Jun 17
Mo Ller-Hackbarth, K;Dabaghie, D;Charrin, E;Zambrano, S;Genové, G;Li, X;Wernerson, A;Lal, M;Patrakka, J;
PMID: 34147551 | DOI: 10.1016/j.kint.2021.05.036
Diabetes Obes Metab.
2018 Apr 29
Hebsgaard JB, Pyke C, Yildirim E, Knudsen LB, Heegaard S, Kvist PH.
PMID: 29707863 | DOI: 10.1111/dom.13339
Semaglutide is a human glucagon-like peptide-1 (GLP-1) analogue that is in development for the treatment of type 2 diabetes. In the pre-approval cardiovascular outcomes trial SUSTAIN 6, semaglutide was associated with a significant increase in the risk of diabetic retinopathy (DR) complications vs placebo. GLP-1 receptor (GLP-1R) expression has previously been demonstrated in the retina in animals and humans; however, antibodies used to detect expression have been documented to be non-specific and fail to detect the GLP-1R using immunohistochemistry (IHC), a problem common for many G-protein coupled receptors. Using a validated GLP-1R antibody for IHC and in situ hybridization for GLP-1R mRNA in normal human eyes, GLP-1Rs were detected in a small fraction of neurons in the ganglion cell layer. In advanced stages of DR, GLP-1R expression was not detected at the protein or mRNA level. Specifically, no GLP-1R expression was found in the eyes of people with long-standing proliferative DR (PDR). In conclusion, GLP-1R expression is low in normal human eyes and was not detected in eyes exhibiting advanced stages of PDR.
Hypertension research : official journal of the Japanese Society of Hypertension
2023 Feb 21
Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9
Pflugers Archiv : European journal of physiology
2022 Dec 08
Heinl, ES;Broeker, KA;Lehrmann, C;Heydn, R;Krieger, K;Ortmaier, K;Tauber, P;Schweda, F;
PMID: 36480070 | DOI: 10.1007/s00424-022-02774-9
Poultry Science
2018 Aug 01
Zhang H, Li H, Kidrick J, Wong EA.
PMID: - | DOI: 10.3382/ps/pey343
The uptake of glucose is mediated mainly by the sodium-glucose cotransporter, SGLT1. Previous studies using quantitative PCR showed that SGLT1 mRNA was induced in the yolk sac and in the small intestine prior to hatch. However, PCR analysis did not allow for the localization of cells expressing SGLT1 mRNA. The objective of this study was to use in situ hybridization to identify cells in the yolk sac and small intestine that expressed SGLT1 mRNA during the transition from late embryogenesis to early post-hatch. Expression of SGLT1 mRNA in yolk sac epithelial cells was low from embryonic d 11 to 17, peaked at embryonic d 19, and declined at day of hatch. In the small intestine, cells expressing SGLT1 mRNA were present not only along the intestinal villi but also in the crypts. There was greater expression of SGLT1 mRNA in the intestinal epithelial cells that line the villus than in the olfactomedin 4-expressing stem cells located in the crypts. The latter result suggests that stem cells have the ability to import glucose. Expression of SGLT1 mRNA in the intestine increased from embryonic d 19 to day of hatch and then maintained a high level of expression from d 1 to d 7 post-hatch. For both the yolk sac and small intestine, the temporal pattern of SGLT1 mRNA expression detected by in situ hybridization was consistent with the pattern revealed by PCR.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
2021 Oct 25
Vazquez-Liebanas, E;Nahar, K;Bertuzzi, G;Keller, A;Betsholtz, C;Mäe, MA;
PMID: 34689641 | DOI: 10.1177/0271678X211056395
Alzheimers Res Ther.
2019 Feb 02
Magno L, Lessard CB, Martins M, Lang V, Cruz P, Asi Y, Katan M, Bilsland J, Lashley T, Chakrabarty P, Golde TE, Whiting PJ.
PMID: 30711010 | DOI: 10.1186/s13195-019-0469-0
Recent Genome Wide Association Studies (GWAS) have identified novel rare coding variants in immune genes associated with late onset Alzheimer's disease (LOAD). Amongst these, a polymorphism in phospholipase C-gamma 2 (PLCG2) P522R has been reported to be protective against LOAD. PLC enzymes are key elements in signal transmission networks and are potentially druggable targets. PLCG2 is highly expressed in the hematopoietic system. Hypermorphic mutations in PLCG2 in humans have been reported to cause autoinflammation and immune disorders, suggesting a key role for this enzyme in the regulation of immune cell function.
We assessed PLCG2 distribution in human and mouse brain tissue via immunohistochemistry and in situ hybridization. We transfected heterologous cell systems (COS7 and HEK293T cells) to determine the effect of the P522R AD-associated variant on enzymatic function using various orthogonal assays, including a radioactive assay, IP-One ELISA, and calcium assays.
PLCG2 expression is restricted primarily to microglia and granule cells of the dentate gyrus. Plcg2 mRNA is maintained in plaque-associated microglia in the cerebral tissue of an AD mouse model. Functional analysis of the p.P522R variant demonstrated a small hypermorphic effect of the mutation on enzyme function.
The PLCG2 P522R variant is protective against AD. We show that PLCG2 is expressed in brain microglia, and the p.P522R polymorphism weakly increases enzyme function. These data suggest that activation of PLCγ2 and not inhibition could be therapeutically beneficial in AD. PLCγ2 is therefore a potential target for modulating microglia function in AD, and a small molecule drug that weakly activates PLCγ2 may be one potential therapeutic approach.
Human Pathology
2016 Dec 30
Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ, Wen X, Jeong S, Cho NY, Kim WH, Kang GH.
PMID: - | DOI: 10.1016/j.humpath.2016.12.018
Cancer associated fibroblasts (CAFs) are the dominant cell population in the cancer stroma. Gremlin 1 (GREM1), an antagonist of the bone morphogenetic protein pathway, is expressed by CAFs in a variety of human cancers. However, its biological significance for cancer patients is largely unknown. We applied RNA in situ hybridization (ISH) to evaluate the prognostic value of stromal GREM1 expression in a large cohort of 670 colorectal cancers (CRCs). Overall GREM1 expression in CRCs was lower than that of the matched normal mucosa, and GREM1 expression had a strong positive correlation with BMI1 and inverse correlations with EPHB2 and OLFM4. RNA ISH localized the GREM expression to smooth muscle cells of the muscularis mucosa, fibroblasts around crypt bases and in the submucosal space of a normal colon. In various colon polyps, epithelial GREM1 expression was exclusively observed in traditional serrated adenomas. In total, 44% of CRCs were positive for stromal GREM1, which was associated with decreased lymphovascular invasion, a lower cancer stage, and nuclear β-catenin staining. Stromal GREM1 was significantly associated with improved recurrence-free and overall survival, although it was not found to be an independent prognostic marker in multivariate analyses. In addition, for locally advanced stage II and III CRCs, it was associated with better, stage-independent clinical outcomes. In summary, CRCs are frequently accompanied by GERM1-expressing fibroblasts, which are closely associated with low lymphovascular invasion and a better prognosis, suggesting stromal GREM1 as a potential biomarker and possible candidate for targeted therapy in the treatment of CRCs.
Thorax
2022 May 17
Heydarian, M;Oak, P;Zhang, X;Kamgari, N;Kindt, A;Koschlig, M;Pritzke, T;Gonzalez-Rodriguez, E;Förster, K;Morty, RE;Häfner, F;Hübener, C;Flemmer, AW;Yildirim, AO;Sudheendra, D;Tian, X;Petrera, A;Kirsten, H;Ahnert, P;Morrell, N;Desai, TJ;Sucre, J;Spiekerkoetter, E;Hilgendorff, A;
PMID: 35580897 | DOI: 10.1136/thoraxjnl-2021-218083
PLoS One, 8(12):e82390.
Jang BG, Lee BL, Kim WH. (2013).
PMID: 24340024 | DOI: 10.1371/journal.pone.0082390.
Poult Sci.
2017 Nov 15
Zhang H, Wong EA.
PMID: 29155957 | DOI: 10.3382/ps/pex328
The chicken yolk sac (YS) and small intestine are essential for nutrient absorption during the pre-hatch and post-hatch periods, respectively. Absorptive enterocytes and secretory cells line the intestinal villi and originate from stem cells located in the intestinal crypts. Similarly, in the YS, there are absorptive and secretory cells that presumably originate from a stem cell population. Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) and olfactomedin 4 (Olfm4) are 2 widely used markers for intestinal stem cells. The objective of this study was to map the distribution of putative stem cells expressing LGR5 and OLFM4 mRNA in the chicken small intestine from the late embryonic period to early post hatch and the YS during embryogenesis. At embryonic d 11, 13, 15, 17, and 19, the YS was collected (n = 3), and small intestine was collected at embryonic d 19, d of hatch (doh), and d 1, 4, and 7 post hatch (n = 3). Cells expressing OLFM4 and LGR5 mRNA were identified by in situ hybridization. In the YS, cells expressing only LGR5 and not OLFM4 mRNA were localized to the vascular endothelial cells lining the blood vessels. In the small intestine, cells in the intestinal crypt expressed both LGR5 and OLFM4 mRNA. Staining for OLFM4 mRNA was more intense than LGR5 mRNA, demonstrating that Olfm4 is a more robust marker for stem cells than Lgr5. At embryonic d 19 and doh, cells staining for OLFM4 mRNA were already present in the rudimentary crypts, with the greatest staining in the duodenal crypts. The intensity of OLFM4 mRNA staining increased from doh to d 7 post hatch. Dual label staining at doh for the peptide transporter PepT1 and Olfm4 revealed a population of cells above the crypts that did not express Olfm4 or PepT1 mRNA. These cells are likely progenitor transit amplifying cells. Thus, avians and mammals share similarity in the ontogeny of stem cells in the intestinal crypts.
Endocrinology.
2018 Feb 12
Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ.
PMID: 29444223 | DOI: 10.1210/en.2018-00004
Glucagon-like peptide-1 receptor (GLP-1R) agonists, used to treat type 2 diabetes and obesity, reduce rates of myocardial infarction and cardiovascular death. The GLP-1R has been localized to the human sinoatrial node; however, its expression in ventricular tissue remains uncertain. Here we studied GLP-1R expression in the human heart using GLP-1R-directed antisera, quantitative PCR, reverse transcription PCR to detect full length mRNA transcripts, and in situ hybridization. GLP1R mRNA transcripts, encompassing the entire open reading frame, were detected in all four cardiac chambers from 15 hearts at levels approximating those detected in human pancreas. In contrast, cardiac GLP2R expression was relatively lower, whereas cardiac GCGR expression was sporadic and not detected in the left ventricle. GLP1R mRNA transcripts were not detected in RNA from human cardiac fibroblasts, coronary artery endothelial, or vascular smooth muscle cells. Human Brunner's glands and pancreatic islets exhibited GLP-1R-immunopositivity and abundant expression of GLP1R mRNA transcripts by in situ hybridization. GLP1R transcripts were also detected by in situ hybridization in human cardiac sinoatrial node tissue. However definitive cellular localization of GLP1R mRNA transcripts or immunoreactive GLP-1R protein within human cardiomyocytes (CMs) or cardiac blood vessels remained elusive. Moreover, validated GLP-1R antisera lacked sufficient sensitivity to detect expression of the endogenous islet or cardiac GLP-1R by Western blotting. Hence, although human cardiac ventricles express the GLP1R, the identity of one or more ventricular cell type(s) that express a translated GLP1R protein requires further clarification with highly sensitive methods of detection.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com