Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4
Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed.Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated.In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum.Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Development (Cambridge, England)
Marczenke, M;Sunaga-Franze, DY;Popp, O;Althaus, IW;Sauer, S;Mertins, P;Christ, A;Allen, BL;Willnow, TE;
PMID: 34698766 | DOI: 10.1242/dev.200080
Growth arrest-specific 1 (GAS1) acts as a co-receptor to Patched 1 promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in iPSC-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating Notch signaling, essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives Notch pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating Notch and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Coy S, Du Z, Sheu SH, Woo T, Rodriguez FJ, Kieran MW, Santagata S.
PMID: 27562488 | DOI: 10.1038/modpathol.2016.153
Cilia are highly conserved organelles, which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke's cleft cysts, whereas characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke's cleft cysts. FOXJ1 expression discriminates Rathke's cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared with papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A, and ARL13B, facilitating the diagnosis of Rathke's cleft cysts. Primary cilia can be identified by ARL13B immunohistochemistry in routine pathology specimens. The widespread presence of primary cilia in adamantinomatous craniopharyngioma implicates cilia-dependent hedgehog signaling in the pathogenesis of adamantinomatous craniopharyngioma.
Hosotani, M;Ichii, O;Namba, T;Masum, MA;Nakamura, T;Hasegawa, Y;Watanabe, T;Kon, Y;
PMID: 36577879 | DOI: 10.1007/s00441-022-03722-w
Homeostasis of the oviductal infundibulum epithelium is continuously regulated by signaling pathways under physiological and pathological conditions. Herein, we investigated the expression of hedgehog (Hh) signaling-related components in the murine oviductal infundibulum, which is known to maintain homeostasis in the adult epithelium. Additionally, using autoimmune disease-prone MRL/MpJ-Faslpr/lpr (MRL/lpr) mice showing abnormal morphofunction of the ciliated epithelium of the infundibulum related to the oviductal inflammation, we examined the relationship between Hh signaling and pathology of the infundibulum. The expression and localization of Pax8, a marker for progenitor cells in the oviductal epithelium, and Foxj1, a marker for ciliogenesis, were examined in the infundibulum. The results showed that Pax8 was downregulated and Foxj1 was upregulated with aging, suggesting that homeostasis of the infundibulum epithelium of MRL/lpr mice was disturbed at 6 months of age. In all mice, the motile cilia of ciliated epithelial cells in the infundibulum harbored Hh signaling pathway-related molecules: patched (Ptch), smoothened (Smo), and epithelial cells harbor Gli. In contrast, Ptch, Smo, and Gli2 were significantly downregulated in the infundibulum of MRL/lpr mice at 6 months of age. The expression levels of Pax8 and Foxj1 were significantly positively correlated with those of Ptch1, Smo, and Gli2. Hh signaling is thought to be involved in homeostasis of the ciliated epithelium in the infundibulum. In MRL/lpr mice, which show exacerbated severe systemic autoimmune abnormalities, molecular alterations in Hh signaling-related components are considered to interact with local inflammation in the infundibulum, leading to disturbances in epithelial homeostasis and reproductive function.
Gene-targeted, CREB-mediated induction of ΔFosB controls distinct downstream transcriptional patterns within D1 and D2 medium spiny neurons
Lardner, C;van der Zee, Y;Estill, M;Kronman, H;Salery, M;Cunningham, A;Godino, A;Parise, E;Kim, J;Neve, R;Shen, L;Hamilton, P;Nestler, E;
| DOI: 10.1016/j.biopsych.2021.06.017
Background The onset and persistence of addiction phenotypes are, in part, mediated by transcriptional mechanisms in the brain that affect gene expression and subsequently neural circuitry. ΔFosB is a transcription factor that accumulates in the nucleus accumbens (NAc) – a brain region responsible for coordinating reward and motivation – after exposure to virtually every known rewarding substance, including cocaine and opioids. ΔFosB has also been shown to directly control gene transcription and behavior downstream of both cocaine and opioid exposure, but with potentially different roles in D1 and D2 medium spiny neurons (MSNs) in NAc. Methods To clarify MSN subtype-specific roles for ΔFosB, and investigate how these coordinate the actions of distinct classes of addictive drugs in NAc, we developed a CRISPR/Cas9-based epigenome editing tool to induce endogenous ΔFosB expression in vivo in the absence of drug exposure. After inducing ΔFosB in D1 or D2 MSNs, or both, we performed RNA-sequencing on bulk male and female NAc tissue (N = 6-8/group). Results We find that ΔFosB induction elicits distinct transcriptional profiles in NAc by MSN subtype and by sex, establishing for the first time that ΔFosB mediates different transcriptional effects in males vs females. We also demonstrate that changes in D1 MSNs, but not in D2 MSNs or both, significantly recapitulate changes in gene expression induced by cocaine self-administration. Conclusions Together, these findings demonstrate the efficacy of a novel molecular tool for studying cell-type-specific transcriptional mechanisms, and shed new light on the activity of ΔFosB, a critical transcriptional regulator of drug addiction.
Zhou, K;Xu, H;Lu, S;Jiang, S;Hou, G;Deng, X;He, M;Zhu, Y;
PMID: 36271048 | DOI: 10.1038/s41467-022-33843-3
The nucleus accumbens (NAc) is critical in mediating reward seeking and is also involved in negative emotion processing, but the cellular and circuitry mechanisms underlying such opposing behaviors remain elusive. Here, using the recently developed AAV1-mediated anterograde transsynaptic tagging technique in mice, we show that NAc neurons receiving basolateral amygdala inputs (NAcBLA) promote positive reinforcement via disinhibiting dopamine neurons in the ventral tegmental area (VTA). In contrast, NAc neurons receiving paraventricular thalamic inputs (NAcPVT) innervate GABAergic neurons in the lateral hypothalamus (LH) and mediate aversion. Silencing the synaptic output of NAcBLA neurons impairs reward seeking behavior, while silencing of NAcPVT or NAcPVT→LH pathway abolishes aversive symptoms of opiate withdrawal. Our results elucidate the afferent-specific circuit architecture of the NAc in controlling reward and aversion.
Frontiers in cellular neuroscience
Giua, G;Lassalle, O;Makrini-Maleville, L;Valjent, E;Chavis, P;Manzoni, OJJ;
PMID: 37323585 | DOI: 10.3389/fncel.2023.1146647
Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes.We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes.Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS.Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.
Takizawa N, Tanaka S, Oe S, Koike T, Yoshida T, Hirahara Y, Matsuda T, Yamada H.
PMID: 30266964 | DOI: 10.1038/s41598-018-32870-9
Bilateral adrenalectomy forces the patient to undergo glucocorticoid replacement therapy and bear a lifetime risk of adrenal crisis. Adrenal autotransplantation is considered useful to avoid adrenal crisis and glucocorticoid replacement therapy. However, the basic process of regeneration in adrenal autografts is poorly understood. Here, we investigated the essential regeneration factors in rat adrenocortical autografts, with a focus on the factors involved in adrenal development and steroidogenesis, such as Hh signalling. A remarkable renewal in cell proliferation and increase in Cyp11b1, which encodes 11-beta-hydroxylase, occurred in adrenocortical autografts from 2-3 weeks after autotransplantation. Serum corticosterone and adrenocorticotropic hormone levels were almost recovered to sham level at 4 weeks after autotransplantation. The adrenocortical autografts showed increased Dhh expression at 3 weeks after autotransplantation, but not Shh, which is the only Hh family member to have been reported to be expressed in the adrenal gland. Increased Gli1 expression was also found in the regenerated capsule at 3 weeks after autotransplantation. Dhh and Gli1 might function in concert to regenerate adrenocortical autografts. This is the first report to clearly show Dhh expression and its elevation in the adrenal gland.
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos
Journal of Developmental Biology
Brooks, E;Bonatto Paese, C;Carroll, A;Struve, J;Nagy, N;Brugmann, S;
| DOI: 10.3390/jdb9020012
Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
The Journal of Neuroscience, 8 April 2015, 35(14): 5625-5639
Rubio FJ, Liu QR, Li X, Cruz FC, Leão RM, Warren BL, Kambhampati S, Babin KR, McPherson KB, Cimbro R, Bossert JM, Shaham Y, Hope BT.
PMID: 25855177 | DOI: 10.1523/JNEUROSCI.4997-14.2015
Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons.
Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM, Zakharia K, Allen BL, Gores GJ, Samuelson LC, Merchant JL.
| DOI: 10.1002/hep4.1295
Hedgehog (HH) signaling participates in hepatobiliary repair after injury and is activated in patients with cholangiopathies. Cholangiopathies are associated with bile duct (BD) hyperplasia, including expansion of peribiliary glands, the niche for biliary progenitor cells. The inflammation‐associated cytokine interleukin (IL)‐33 is also up‐regulated in cholangiopathies, including cholangiocarcinoma. We hypothesized that HH signaling synergizes with IL‐33 in acute inflammation‐induced BD hyperplasia. We measured extrahepatic BD (EHBD) thickness and cell proliferation with and without an IL‐33 challenge in wild‐type mice, mice overexpressing Sonic HH (pCMV‐Shh), and mice with loss of the HH pathway effector glioma‐associated oncogene 1 (Gli1lacZ/lacZ). LacZ reporter mice were used to map the expression of HH effector genes in mouse EHBDs. An EHBD organoid (BDO) system was developed to study biliary progenitor cells in vitro. EHBDs from the HH overexpressing pCMV‐Shh mice showed increased epithelial cell proliferation and hyperplasia when challenged with IL‐33. In Gli1lacZ/lacZ mice, we observed a decreased proliferative response to IL‐33 and decreased expression of Il6. The HH ligands Shh and Indian HH (Ihh) were expressed in epithelial cells, whereas the transcriptional effectors Gli1, Gli2, and Gli3 and the HH receptor Patched1 (Ptch1) were expressed in stromal cells, as assessed by in situ hybridization and lacZ reporter mice. Although BDO cells lacked canonical HH signaling, they expressed the IL‐33 receptor suppression of tumorigenicity 2. Accordingly, IL‐33 treatment directly induced BDO cell proliferation in a nuclear factor κB‐dependent manner. Conclusion: HH ligand overexpression enhances EHBD epithelial cell proliferation induced by IL‐33. This proproliferative synergism of HH and IL‐33 involves crosstalk between HH ligand‐producing epithelial cells and HH‐responding stromal cells.