Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • (-) Remove FGFR2 filter FGFR2 (6)
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter

Research area

  • (-) Remove Cancer filter Cancer (11)
  • HPV (3) Apply HPV filter

Category

  • Publications (11) Apply Publications filter
Clinicopathologic diagnosis of dVIN related vulvar squamous cell carcinoma: An extended appraisal from a tertiary women's hospital

Gynecology and Obstetrics Clinical Medicine

2023 Jan 01

Wang, T;Baloda, V;Harinath, L;Jones, T;Zhang, H;Bhargava, R;Zhao, C;
| DOI: 10.1016/j.gocm.2023.01.004

Background Differentiated vulvar intraepithelial neoplasia (dVIN) is a non-human papilloma virus (HPV)-related high-grade precursor lesion to vulvar squamous cell carcinoma (vSCCa). Although TP53 gene mutations have been identified in 80% of dVIN, its role in dVIN pathogenesis as well as malignant transformation is still being poorly understood. Poor reproducible diagnostic criteria and ambiguous p53 immunostaining patterns, along with morphologic discordance still pose a diagnostic challenge. Methods A series of 60 cases of dVIN-related vSCCa along with adjacent dVIN were evaluated. Clinicopathological features as well as immunohistochemical results were recorded on the resection-confirmed dVIN-related vSCCa. Results The average age of the patients was 71 years. Thirty-five cases (58.4%) of dVIN-related vSCCa were moderately differentiated, fourteen cases (23.3%) were poorly differentiated, and the remaining eleven cases (18.3%) were well-differentiated. Twenty-nine cases (48.3%) were found to have lichen sclerosus adjacent to dVIN. In terms of p53 and p16 expression in dVIN-related vSCCa and the adjacent dVIN, fifty-five (91.7%) dVIN showed mutant p53 immunostaining pattern with strong positive expression in 80% cases (basal/para-basal expression) and null pattern expression in 11.7% cases. Five (8.3%) dVIN showed p53 wild-type staining pattern. The wild-type pattern were seen in 5% of vSCCa and p53 null pattern were seen in 13.3% vSCCa. Six cases demonstrated atypical staining patterns: two cases showed p53 null expression in dVIN but p53 overexpression in invasive carcinoma; three cases exhibited p53 null expression in invasive carcinoma, with the adjacent dVIN showing basal and para-basal mutant (2 cases) and wild-type (1 case) p53 expression patterns. A single case demonstrated p53 wild-type pattern in dVIN and overexpression in invasive carcinoma. In addition, 65% dVIN were p16 negative and 31.7% dVIN had patchy p16 staining. Conclusion: Clinical and prognostic value of the ambiguous/inconsistent patterns are uncertain and molecular studies are needed for further characterization.
Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors

Cancer Res.

2016 Aug 19

Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schumacher J, Braun M, Zierz R, Wittemer-Rump S, Harrenga A, Dittmer F, Reetz F, Apeler H, Jautelat R, Huynh H, Ziegelbauer K, Kreft B.
PMID: 27543601 | DOI: 10.1158/0008-5472.CAN-16-0180

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which is specific for the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a non-cleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nM to sub-nM range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy and cytotoxic effects in vitro. Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared to healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Further, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients, and a Phase I study (NCT02368951) has been initiated.

Evaluation of Fibroblast Growth Factor Receptor 2 Expression, Heterogeneity and Clinical Significance in Gastric Cancer.

Pathobiology.

2015 Oct 31

Han N, Kim MA, Lee HS, Kim WH.
PMID: 26516773 | DOI: -

Abstract

BACKGROUND:
We aimed to evaluate the protein and mRNA expression of fibroblast growth factor receptor 2 (FGFR2) by immunohistochemistry (IHC) and mRNA in situ hybridization (ISH), respectively, and to assess the heterogeneity of FGFR2 expression in gastric cancer (GC).

METHODS:
A tissue microarray containing 362 surgically resected GC tissues and 135 matched metastatic lymph nodes was evaluated using FGFR2b IHC and FGFR2 ISH. FGFR2 fluorescence ISH was also performed in 188 cases.

RESULTS:
All FGFR2-amplified cases (5 of 188) showed FGFR2b protein and FGFR2 mRNA overexpression (p < 0.001), and FGFR2 amplification was not identified in FGFR2b IHC- and FGFR2 mRNA ISH-negative cases. Kaplan-Meier survival analysis revealed that FGFR2b protein and FGFR2 mRNA overexpression was significantly associated with a poor overall survival (p < 0.001 and p = 0.012, respectively), and multivariate analyses showed that FGFR2 mRNA overexpression was an independent biomarker of a poor overall survival. Intratumoral heterogeneity of FGFR2b protein and FGFR2 mRNA overexpression was observed in 5 of 9 (55.5%) and 18 of 21 (85.7%) cases, respectively. Discordant FGFR2b and FGFR2 expression results between primary and matched metastatic lymph nodes were observed in 5 of 9 (55.5%) and 4 of 14 (28.6%) cases, respectively.

CONCLUSIONS:
Intratumoral heterogeneity and discordant FGFR2b expression in primary tumors and metastatic lymph nodes are common in GC.

Comparison of Fibroblast Growth-factor Receptor Gene Alterations at the DNA versus Messenger RNA Level in Advanced Urothelial Cancer: Insights for Clinical Research.

Eur Urol Focus.

2017 Aug 27

Necchi A, Raggi D, Volpi CC, Giannatempo P, Colecchia M, Gloghini A.
PMID: 28855072 | DOI: 10.1016/j.euf.2017.08.002

Pan-fibroblast growth-factor receptor (FGFR) inhibitors hold promise in FGFR-altered patients, but such alterations are rare in advanced urothelial carcinoma. In order to assess whether we may increase the number of eligible patients by using different molecular techniques for detecting alterations, we pooled the results of the centralised FGFR mutation/translocation assays that were performed in Clinical Laboratory Improvement Amendments-certified laboratories within multiple phase 2 trials. At our centre, the same tissue blocks were used to analyse FGFR1-3 messenger RNA expression through messenger RNA in situ hybridisation (ISH; RNAscope 2.5 assay). From October 2016 to March 2017, 52 cases were analysed. Seventeen patients (32.7%) had an upper tract primary tumour. Ten patients (19.2%) had FGFR DNA alterations. Twenty-nine (55.8%) had positive ISH analysis: N=17 score 3, N=12 score 4. Of note, concordance between the two tests was obtained in seven out of 10 patients. Sixty percent of mutated patients had an upper tract primary tumour versus 31% of ISH-positive patients.

PATIENT SUMMARY:

We found three-fold higher frequency of fibroblast growth-factor receptor alterations at the RNA versus DNA level in advanced urothelial carcinoma, with a different distribution according to the method used and the site of the primary tumour. The evaluation of the therapeutic response to pan-fibroblast growth-factor receptor inhibitors according to the method of assessment is warranted.

Viral and Genomic Drivers of Squamous Cell Neoplasms Arising in the Lacrimal Drainage System

Cancers

2022 May 23

Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Heegaard, S;
PMID: 35626161 | DOI: 10.3390/cancers14102558

The pathogenesis of squamous cell neoplasms arising in the lacrimal drainage system is poorly understood, and the underlying genomic drivers for disease development remain unexplored. We aimed to investigate the genomic aberrations in carcinomas arising in the LDS and correlate the findings to human papillomavirus (HPV) status. The HPV analysis was performed using HPV DNA PCR, HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic characterization was performed by targeted DNA sequencing of 523 cancer-relevant genes. Patients with LDS papilloma (n = 17) and LDS carcinoma (n = 15) were included. There was a male predominance (68%) and a median age at diagnosis of 46.0 years (range 27.5-65.5 years) in patients with papilloma and 63.8 years (range 34.0-87.2 years) in patients with carcinoma. Transcriptional activity of the HPV E6/E7 oncogenes was detected in the whole tumor thickness in 12/15 (80%) papillomas (HPV6, 11, 16) and 10/15 (67%) squamous cell carcinomas (SCC) (HPV11: 3/15 (20%) and HPV16: 7/15 (47%)). Pathogenic variants in PIK3CA, FGFR3, AKT1, and PIK3R1, wildtype TP53, p16 overexpression, and deregulated high-risk E6/E7 transcription characterized the HPV16-positive SCC. The deregulated pattern of HPV E6/E7 expression, correlating with HPV DNA presence and p16 positivity, supports a causal role of HPV in a subset of LDS papillomas and carcinomas. The viral and molecular profile of LDS SCC resembles that of other HPV-driven SCC.
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale

Frontiers in endocrinology

2021 Aug 12

Adam, P;Kircher, S;Sbiera, I;Koehler, VF;Berg, E;Knösel, T;Sandner, B;Fenske, WK;Bläker, H;Smaxwil, C;Zielke, A;Sipos, B;Allelein, S;Schott, M;Dierks, C;Spitzweg, C;Fassnacht, M;Kroiss, M;
PMID: 34475850 | DOI: 10.3389/fendo.2021.712107

Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual‑color in situ hybridization in a large cohort of gastric cancer patients

Gastric Cancer

2017 Aug 29

Kuboki Y, Schatz CA, Koechert K, Schubert S, Feng J, Wittemer-Rump S, Ziegelbauer K, Krahn T, Kawano Nagatsuma A, Ochiai A.
PMID: - | DOI: 10.1007/s10120-017-0758-x

Abstract

Background

Fibroblast growth factor receptor (FGFR2) has been proposed as a target in gastric cancer. However, appropriate methods to select patients for anti-FGFR2 therapies have not yet been established.

Methods

We used in situ techniques to investigate FGFR2 mRNA expression and gene amplification in a large cohort of 1036 Japanese gastric cancer patients. FGFR2 mRNA expression was determined by RNAscope. FGFR2 gene amplification was determined by dual-color in situ hybridization (DISH).

Results

We successfully analyzed 578 and 718 samples by DISH and RNAscope, respectively; 2% (12/578) showed strong FGFR2 gene amplification (FGFR2:CEN10 >10); moderate FGFR2gene amplification (FGFR2:CEN10 <10; ≥2) was detected in 8% (47/578); and high FGFR2 mRNA expression of score 4 (>10 dots/cell and >10% of positive cells with dot clusters under a 20× objective) was seen in 4% (29/718). For 468 samples, both mRNA and DISH data were available. FGFR2 mRNA expression levels were associated with gene amplification; FGFR2 mRNA levels were highest in the highly amplified samples (n = 12). All highly amplified samples showed very strong FGFR2 mRNA expression (dense clusters of the signal visible under a 1× objective). Patients with very strong FGFR2 mRNA expression showed more homogeneous FGFR2 mRNA expression compared to patients with lower FGFGR2 mRNA expression. Gastric cancer patients with tumors that had an FGFR2 mRNA expression score of 4 had shorter RFS compared with score 0–3 patients.

Conclusion

RNAscope and DISH are suitable methods to evaluate FGFR2 status in gastric cancer. Formalin-fixed paraffin-embedded (FFPE) tissue slides allowed evaluation of the intratumor heterogeneity of these FGFR2 biomarkers.

Prognostic Analysis of HPV Status in Sinonasal Squamous Cell Carcinoma

Cancers

2022 Apr 08

Tendron, A;Classe, M;Casiraghi, O;Pere, H;Even, C;Gorphe, P;Moya-Plana, A;
PMID: 35454782 | DOI: 10.3390/cancers14081874

Sinonasal squamous cell carcinoma (SNSCC) is a rare and aggressive malignancy with poor prognosis. Human papilloma virus (HPV) can induce SNSCC although its incidence and impact on patients' outcomes remains unclear. We performed a retrospective cohort study of patients with SNSCC treated consecutively in a comprehensive cancer center. HPV status was determined with p16 immunohistochemistry followed by RNA in situ hybridization (RNAscope). The incidence, clinical characteristics, and oncologic outcomes of HPV+SNSCC were assessed. P16 prognostic value was evaluated. Fifty-nine patients were included. Eleven (18.6%) SNSCC were p16+ with five (8.4%) doubtful cases. RNAscope was positive in nine cases (15.2%). Patients with HPV+SNSCC were younger (p = 0.0298) with a primary tumor originating mainly in nasal fossa (p &lt; 10-4). Pathologic findings were not different according to HPV status. Among patients who were curatively treated, overall survival was better for HPV+SNSCC (p = 0.022). No prognostic value of p16 expression was reported. Patients with HPV+SNSCC have better oncologic outcomes, probably due to earlier tumor stage with primary location predominantly in the nasal fossa, a more suitable epicenter to perform a surgical resection with clear margins. P16 expression seems not to be a good surrogate of HPV status in SNSCC.
FGFR3 mRNA overexpression defines a subset of oligometastatic colorectal cancers with worse prognosis

Oncotarget.

2018 Aug 14

Fromme JE, Schmitz K, Wachter A, Grzelinski M, Zielinski D, Koppel C, Conradi LC, Homayounfar K, Hugo T, Hugo S, Lukat L, Rüschoff J, Ströbel P, Ghadimi M, Beißbarth T, Reuter-Jessen K, Bleckmann A, Schildhaus HU.
PMID: 30181810 | DOI: 10.18632/oncotarget.25941

Abstract

OBJECTIVES:

Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established.

METHODS:

We investigated the prevalence of FGFR alterations in a total of 140 primary colorectal tumors and 63 liver metastases of 55 oligometastatic CRC patients. FGF receptors (FGFR1-4) and their ligands (FGF3, 4 and 19) were analyzed for gene amplifications and rearrangements as well as for RNA overexpression in situ. Results were correlated with clinico-pathologic data and molecular subtypes.

RESULTS:

Primary tumors showed FGFR1 (6.3%) and FGF3,4,19 (2.2%) amplifications as well as FGFR1 (10.1%), FGFR2 (5.5%) and FGFR3 (16.2%) overexpression. In metastases, we observed FGFR1 amplifications (4.8%) as well as FGFR1 (8.5%) and FGFR3 (14.9%) overexpression. Neither FGFR2-4 amplifications nor gene rearrangements were observed. FGFR3 overexpression was significantly associated with shorter overall survival in metastases (mOS 19.9 vs. 47.4 months, HR=3.14, p=0.0152), but not in primary CRC (HR=1.01, p=0.985). Although rare, also FGFR1 amplification was indicative of worse outcome (mOS 12.6 vs. 47.4 months, HR=8.83, p=0.00111).

CONCLUSIONS:

We provide the so far most comprehensive analysis of FGFR alterations in primary and metastatic CRC. We describe FGFR3 overexpression in 15% of CRC patients with oligometastatic liver disease as a prognosticator for poor outcome. Recently FGFR3 overexpression has been shown to be a potential therapeutic target. Therefore, we suggest focusing on this subgroup in upcoming clinical trials with FGFR-targeted therapies.

A Case of HPV-Associated Oropharyngeal Squamous Cell Carcinoma with Block-Like, Partial Loss of p16 Expression

Head and neck pathology

2022 Jun 30

Rasmussen, SA;Lewis, JS;Mirabello, L;Bass, S;Yeager, M;Corsten, MJ;Bullock, MJ;
PMID: 35771403 | DOI: 10.1007/s12105-022-01463-4

Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass. The primary lesion and multiple regions of the metastatic mass were assessed with p16 immunohistochemistry, RNA in situ hybridization for high-risk HPV, and HPV16 genome sequencing.The primary lesion was p16 negative, and the metastatic neck mass had large, confluent regions that were either strongly p16 positive or entirely p16 negative. All of these regions were positive for high-risk HPV with identical HPV16 genomes.This unusual case illustrates a potential diagnostic pitfall, and it raises important questions regarding molecular mechanisms and prognostic implications of p16 staining in oropharyngeal squamous cell carcinoma.
Molecular Analysis of HPV-independent Primary Endometrial Squamous Cell Carcinoma Reveals TP53 and CDKN2A comutations: A Clinicopathologic Analysis With Re-evaluation of Diagnostic Criteria

The American journal of surgical pathology

2022 Sep 05

Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970

Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?