Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (16)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • (-) Remove CD68 filter CD68 (11)
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (16)
  • HPV (3) Apply HPV filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Inflammation (1) Apply Inflammation filter
  • Neuroscience (1) Apply Neuroscience filter
  • Racial Bias (1) Apply Racial Bias filter
  • T-cell therapies (1) Apply T-cell therapies filter

Category

  • Publications (16) Apply Publications filter
Localization of macrophage subtypes and neutrophils in the prostate tumor microenvironment and their association with prostate cancer racial disparities

The Prostate

2022 Aug 16

Maynard, JP;Godwin, TN;Lu, J;Vidal, I;Lotan, TL;De Marzo, AM;Joshu, CE;Sfanos, KS;
PMID: 35971807 | DOI: 10.1002/pros.24424

Black men are two to three times more likely to die from prostate cancer (PCa) than White men. This disparity is due in part to discrepancies in socioeconomic status and access to quality care. Studies also suggest that differences in the prevalence of innate immune cells and heightened function in the tumor microenvironment of Black men may promote PCa aggressiveness.We evaluated the spatial localization of and quantified CD66ce+ neutrophils by immunohistochemistry and CD68+ (pan), CD80+ (M1), and CD163+ (M2) macrophages by RNA in situ hybridization on formalin-fixed paraffin-embedded tissues from organ donor "normal" prostate (n = 9) and radical prostatectomy (n = 38) tissues from Black and White men. Neutrophils were quantified in PCa and matched benign tissues in tissue microarray (TMA) sets comprised of 560 White and 371 Black men. Likewise, macrophages were quantified in TMA sets comprised of tissues from 60 White and 120 Black men. The phosphatase and tensin homolog (PTEN) and ETS transcription factor ERG (ERG) expression status of each TMA PCa case was assessed via immunohistochemistry. Finally, neutrophils and macrophage subsets were assessed in a TMA set comprised of distant metastatic PCa tissues collected at autopsy (n = 6) sampled across multiple sites.CD66ce+ neutrophils were minimal in normal prostates, but were increased in PCa compared to benign tissues, in low grade compared to higher grade PCa, in PCa tissues from White compared to Black men, and in PCa with PTEN loss or ERG positivity. CD163+ macrophages were the predominant macrophage subset in normal organ donor prostate tissues from both Black and White men and were significantly more abundant in organ donor compared to prostatectomy PCa tissues. CD68,+  CD80,+ and CD163+ macrophages were significantly increased in cancer compared to benign tissues and in cancers with ERG positivity. CD68+ and CD163+ macrophages were increased in higher grade cancers compared to low grade cancer and CD80 expression was significantly higher in benign prostatectomy tissues from Black compared to White men.Innate immune cell infiltration is increased in the prostate tumor microenvironment of both Black and White men, however the composition of innate immune cell infiltration may vary between races.
Clinicopathologic diagnosis of dVIN related vulvar squamous cell carcinoma: An extended appraisal from a tertiary women's hospital

Gynecology and Obstetrics Clinical Medicine

2023 Jan 01

Wang, T;Baloda, V;Harinath, L;Jones, T;Zhang, H;Bhargava, R;Zhao, C;
| DOI: 10.1016/j.gocm.2023.01.004

Background Differentiated vulvar intraepithelial neoplasia (dVIN) is a non-human papilloma virus (HPV)-related high-grade precursor lesion to vulvar squamous cell carcinoma (vSCCa). Although TP53 gene mutations have been identified in 80% of dVIN, its role in dVIN pathogenesis as well as malignant transformation is still being poorly understood. Poor reproducible diagnostic criteria and ambiguous p53 immunostaining patterns, along with morphologic discordance still pose a diagnostic challenge. Methods A series of 60 cases of dVIN-related vSCCa along with adjacent dVIN were evaluated. Clinicopathological features as well as immunohistochemical results were recorded on the resection-confirmed dVIN-related vSCCa. Results The average age of the patients was 71 years. Thirty-five cases (58.4%) of dVIN-related vSCCa were moderately differentiated, fourteen cases (23.3%) were poorly differentiated, and the remaining eleven cases (18.3%) were well-differentiated. Twenty-nine cases (48.3%) were found to have lichen sclerosus adjacent to dVIN. In terms of p53 and p16 expression in dVIN-related vSCCa and the adjacent dVIN, fifty-five (91.7%) dVIN showed mutant p53 immunostaining pattern with strong positive expression in 80% cases (basal/para-basal expression) and null pattern expression in 11.7% cases. Five (8.3%) dVIN showed p53 wild-type staining pattern. The wild-type pattern were seen in 5% of vSCCa and p53 null pattern were seen in 13.3% vSCCa. Six cases demonstrated atypical staining patterns: two cases showed p53 null expression in dVIN but p53 overexpression in invasive carcinoma; three cases exhibited p53 null expression in invasive carcinoma, with the adjacent dVIN showing basal and para-basal mutant (2 cases) and wild-type (1 case) p53 expression patterns. A single case demonstrated p53 wild-type pattern in dVIN and overexpression in invasive carcinoma. In addition, 65% dVIN were p16 negative and 31.7% dVIN had patchy p16 staining. Conclusion: Clinical and prognostic value of the ambiguous/inconsistent patterns are uncertain and molecular studies are needed for further characterization.
Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers

J Ovarian Res. 2015 May 14;8(1):29

O'Shannessy DJ, Somers EB, Wang LC, Wang H, Hsu R.
PMID: 10.3109/00365521.2015.1038849

Abstract BACKGROUND: Folate receptor alpha (FOLR1/FRA) is expressed in a number of epithelial cancers and in particular epithelial ovarian cancer (EOC), especially of the serous histotype. Recent studies have shown that EOC originates from the fallopian tube fimbriae rather than from epithelial cells lining the ovary. We have previously shown by immunohistochemistry a strong correlation between FRA expression in EOC and normal and fallopian adenocarcinoma. Folate receptor beta (FOLR2/FRB) has been described to be expressed by macrophages both in inflammatory disorders and certain epithelial cancers. Given the high sequence identity of these two folate receptor family members we sought to investigate the architectural and cell-specific expression of these two receptors in gynecologic tissues. METHODS: RNA scope, a novel chromogenic in situ hybridization assay tool, was used to examine expression of the alpha (FOLR1) and beta (FOLR2) isoforms of folate receptor relative to each other as well as to the macrophage markers CD11b and CD68, in samples of normal fallopian tube and fallopian adenocarcinoma as well as normal ovary and EOC. RESULTS: We demonstrated expression of both FOLR1 and FOLR2 in EOC, normal fallopian tube and fallopian adenocarcinoma tissue while very little expression of either marker was observed in normal ovary. Furthermore, FOLR2 was shown to be expressed almost exclusively in macrophages, of both the M1 and M2 lineages, as determined by co-expression of CD11b and/or CD68, with little or no expression in epithelial cells. CONCLUSIONS: These findings further substantiate the hypothesis that the cell of origin of EOC is tubal epithelium and that the beta isoform of folate receptor is primarily restricted to macrophages. Further, macrophages expressing FOLR2 may represent tumor associated or infiltrating macrophages (TAMs) in epithelial cancers.
TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer

Cancer research

2021 Nov 15

Lecker, LSM;Berlato, C;Maniati, E;Delaine-Smith, R;Pearce, OMT;Heath, O;Nichols, SJ;Trevisan, C;Novak, M;McDermott, J;Brenton, JD;Cutillas, PR;Rajeeve, V;Hennino, A;Drapkin, R;Loessner, D;Balkwill, FR;
PMID: 34561272 | DOI: 10.1158/0008-5472.CAN-21-0536

The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering

Journal for immunotherapy of cancer

2023 Mar 01

Michels, KR;Sheih, A;Hernandez, SA;Brandes, AH;Parrilla, D;Irwin, B;Perez, AM;Ting, HA;Nicolai, CJ;Gervascio, T;Shin, S;Pankau, MD;Muhonen, M;Freeman, J;Gould, S;Getto, R;Larson, RP;Ryu, BY;Scharenberg, AM;Sullivan, AM;Green, S;
PMID: 36918221 | DOI: 10.1136/jitc-2022-006292

Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation.UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice.In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy.These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.
Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma

Clinical and experimental medicine

2021 May 06

Guidolin, D;Tamma, R;Annese, T;Tortorella, C;Ingravallo, G;Gaudio, F;Perrone, T;Musto, P;Specchia, G;Ribatti, D;
PMID: 33959827 | DOI: 10.1007/s10238-021-00716-w

Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvironment chracteristics are important in its  progression. The aim of this study was to evaluate tumor T, B cells, macrophages and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells.   Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate description of the functional status of the tumor, useful for patient prognosis.
Resolving the immune landscape of human prostate at a single-cell level in health and cancer

Cell reports

2021 Dec 21

Tuong, ZK;Loudon, KW;Berry, B;Richoz, N;Jones, J;Tan, X;Nguyen, Q;George, A;Hori, S;Field, S;Lynch, AG;Kania, K;Coupland, P;Babbage, A;Grenfell, R;Barrett, T;Warren, AY;Gnanapragasam, V;Massie, C;Clatworthy, MR;
PMID: 34936871 | DOI: 10.1016/j.celrep.2021.110132

The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.
Viral and Genomic Drivers of Squamous Cell Neoplasms Arising in the Lacrimal Drainage System

Cancers

2022 May 23

Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Heegaard, S;
PMID: 35626161 | DOI: 10.3390/cancers14102558

The pathogenesis of squamous cell neoplasms arising in the lacrimal drainage system is poorly understood, and the underlying genomic drivers for disease development remain unexplored. We aimed to investigate the genomic aberrations in carcinomas arising in the LDS and correlate the findings to human papillomavirus (HPV) status. The HPV analysis was performed using HPV DNA PCR, HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic characterization was performed by targeted DNA sequencing of 523 cancer-relevant genes. Patients with LDS papilloma (n = 17) and LDS carcinoma (n = 15) were included. There was a male predominance (68%) and a median age at diagnosis of 46.0 years (range 27.5-65.5 years) in patients with papilloma and 63.8 years (range 34.0-87.2 years) in patients with carcinoma. Transcriptional activity of the HPV E6/E7 oncogenes was detected in the whole tumor thickness in 12/15 (80%) papillomas (HPV6, 11, 16) and 10/15 (67%) squamous cell carcinomas (SCC) (HPV11: 3/15 (20%) and HPV16: 7/15 (47%)). Pathogenic variants in PIK3CA, FGFR3, AKT1, and PIK3R1, wildtype TP53, p16 overexpression, and deregulated high-risk E6/E7 transcription characterized the HPV16-positive SCC. The deregulated pattern of HPV E6/E7 expression, correlating with HPV DNA presence and p16 positivity, supports a causal role of HPV in a subset of LDS papillomas and carcinomas. The viral and molecular profile of LDS SCC resembles that of other HPV-driven SCC.
Circulating monocytes associated with anti-PD-1 resistance in human biliary cancer induce T cell paralysis

Cell reports

2022 Sep 20

Keenan, BP;McCarthy, EE;Ilano, A;Yang, H;Zhang, L;Allaire, K;Fan, Z;Li, T;Lee, DS;Sun, Y;Cheung, A;Luong, D;Chang, H;Chen, B;Marquez, J;Sheldon, B;Kelley, RK;Ye, CJ;Fong, L;
PMID: 36130508 | DOI: 10.1016/j.celrep.2022.111384

Suppressive myeloid cells can contribute to immunotherapy resistance, but their role in response to checkpoint inhibition (CPI) in anti-PD-1 refractory cancers, such as biliary tract cancer (BTC), remains elusive. We use multiplexed single-cell transcriptomic and epitope sequencing to profile greater than 200,000 peripheral blood mononuclear cells from advanced BTC patients (n = 9) and matched healthy donors (n = 8). Following anti-PD-1 treatment, CD14+ monocytes expressing high levels of immunosuppressive cytokines and chemotactic molecules (CD14CTX) increase in the circulation of patients with BTC tumors that are CPI resistant. CD14CTX can directly suppress CD4+ T cells and induce SOCS3 expression in CD4+ T cells, rendering them functionally unresponsive. The CD14CTX gene signature associates with worse survival in patients with BTC as well as in other anti-PD-1 refractory cancers. These results demonstrate that monocytes arising after anti-PD-1 treatment can induce T cell paralysis as a distinct mode of tumor-mediated immunosuppression leading to CPI resistance.
Prognostic Analysis of HPV Status in Sinonasal Squamous Cell Carcinoma

Cancers

2022 Apr 08

Tendron, A;Classe, M;Casiraghi, O;Pere, H;Even, C;Gorphe, P;Moya-Plana, A;
PMID: 35454782 | DOI: 10.3390/cancers14081874

Sinonasal squamous cell carcinoma (SNSCC) is a rare and aggressive malignancy with poor prognosis. Human papilloma virus (HPV) can induce SNSCC although its incidence and impact on patients' outcomes remains unclear. We performed a retrospective cohort study of patients with SNSCC treated consecutively in a comprehensive cancer center. HPV status was determined with p16 immunohistochemistry followed by RNA in situ hybridization (RNAscope). The incidence, clinical characteristics, and oncologic outcomes of HPV+SNSCC were assessed. P16 prognostic value was evaluated. Fifty-nine patients were included. Eleven (18.6%) SNSCC were p16+ with five (8.4%) doubtful cases. RNAscope was positive in nine cases (15.2%). Patients with HPV+SNSCC were younger (p = 0.0298) with a primary tumor originating mainly in nasal fossa (p < 10-4). Pathologic findings were not different according to HPV status. Among patients who were curatively treated, overall survival was better for HPV+SNSCC (p = 0.022). No prognostic value of p16 expression was reported. Patients with HPV+SNSCC have better oncologic outcomes, probably due to earlier tumor stage with primary location predominantly in the nasal fossa, a more suitable epicenter to perform a surgical resection with clear margins. P16 expression seems not to be a good surrogate of HPV status in SNSCC.
Latent Membrane Protein 1 and macrophage-derived TNFα synergistically activate and mobilize invadopodia to drive invasion of nasopharyngeal carcinoma

The Journal of pathology

2022 Nov 24

Tang, WC;Tsao, SW;Jones, GE;Liu, X;Tsai, MH;Delecluse, HJ;Dai, W;You, C;Zhang, J;Huang, SCM;Leung, MM;Liu, T;Ching, YP;Chen, H;Lo, KW;Li, X;Tsang, CM;
PMID: 36420735 | DOI: 10.1002/path.6036

Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they were visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. This article is protected by
EPEN-06. Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease

Neuro-Oncology

2022 Jun 03

Bockmayr, M;Harnisch, K;Pohl, L;Schweizer, L;Mohme, T;Körner, M;Alawi, M;Suwala, A;Dorostkar, M;Monoranu, C;Hasselblatt, M;Wefers, A;Capper, D;Hench, J;Frank, S;Richardson, T;Tran, I;Liu, E;Snuderl, M;Engertsberger, L;Benesch, M;von Deimling, A;Obrecht, D;Mynarek, M;Rutkowski, S;Glatzel, M;Neumann, J;Schüller, U;
| DOI: 10.1093/neuonc/noac079.143

Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients’ clinical course are unknown. We assembled a cohort of 185 tumors classified as MPE based on DNA methylation from pediatric, adolescent, and adult patients. Methylation patterns, copy number profiles, and MGMT promoter methylation were analyzed for all tumors, 106 tumors were evaluated histomorphologically, and RNA sequencing was performed for 37 cases. Based on methylation profiling, we defined two subtypes MPE-A and MPEB, and explored associations with epidemiological, clinical, pathological, and molecular characteristics of these tumors. Tumors in the methylation class MPE were histologically diagnosed as WHO grade I (59%), WHO grade II (37%), or WHO grade III tumors (4%). 75/77 analyzed tumors expressed HOXB13, which is a diagnostic feature not detected in other spinal ependymal tumors. Based on DNA methylation, our series split into two subtypes. MPE-A occurred in younger patients (median age 27 vs. 45 years, p=7.3e-05). They were enriched with WHO grade I tumors and associated with papillary morphology and MGMT promoter hypermethylation (all p<0.001). MPE-B included most tumors initially diagnosed as WHO grade II and cases with tanycytic morphology. Copy number alterations were more common in MPE-A. RNA sequencing revealed an enrichment for extracellular matrix and immune system-related signatures in MPE-A. 15/30 MPE-A could not be totally resected compared to 1/58 MPE-B (p=6.3e-08), and progression-free survival was significantly better for MPE-B (p=3.4e-06, 10-year relapse rate 33% vs. 85%). We unraveled the morphological and clinical heterogeneity of MPE by identifying two molecularly distinct subtypes. These subtypes significantly differed in progression-free survival and will likely need different protocols for surveillance and treatment.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?