Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (61)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • (-) Remove PDGFRA filter PDGFRA (33)
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • (-) Remove VGluT1 filter VGluT1 (27)
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (20) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (17) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (38) Apply Neuroscience filter
  • Development (10) Apply Development filter
  • Cancer (6) Apply Cancer filter
  • Other (3) Apply Other filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Endocrinology (2) Apply Endocrinology filter
  • Inflammation (2) Apply Inflammation filter
  • Metabolism (2) Apply Metabolism filter
  • Skin (2) Apply Skin filter
  • Aging (1) Apply Aging filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Cell Biology (1) Apply Cell Biology filter
  • Cell transcriptomics (1) Apply Cell transcriptomics filter
  • CGT (1) Apply CGT filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • Extinction Memory (1) Apply Extinction Memory filter
  • human health (1) Apply human health filter
  • Immune Cells (1) Apply Immune Cells filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Injury (1) Apply Injury filter
  • Lung (1) Apply Lung filter
  • Maternal Immune Activation (1) Apply Maternal Immune Activation filter
  • Neurodevelopment (1) Apply Neurodevelopment filter
  • Other: Skin (1) Apply Other: Skin filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Progenitor Cell (1) Apply Progenitor Cell filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Pulmonology (1) Apply Pulmonology filter
  • Regeneration (1) Apply Regeneration filter
  • Serotonin (1) Apply Serotonin filter
  • Sex Differences (1) Apply Sex Differences filter
  • Singlecell (1) Apply Singlecell filter
  • Sleep (1) Apply Sleep filter
  • Stem Cells (1) Apply Stem Cells filter
  • Stress (1) Apply Stress filter
  • White Matter (1) Apply White Matter filter
  • Wound (1) Apply Wound filter

Category

  • Publications (61) Apply Publications filter
Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell-cell communication

Cell reports

2022 Aug 02

Vu, R;Jin, S;Sun, P;Haensel, D;Nguyen, QH;Dragan, M;Kessenbrock, K;Nie, Q;Dai, X;
PMID: 35926463 | DOI: 10.1016/j.celrep.2022.111155

Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.
Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain

Neuron

2017 May 03

Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD.
PMID: 28472653 | DOI: 10.1016/j.neuron.2017.04.018

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.

GABA Neuronal Deletion of Shank3 Exons 14-16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities.

Front Cell Neurosci. 2018 Oct 9;12:341.

2018 Oct 09

Yoo T, Cho H, Lee J, Park H, Yoo YE, Yang E, Kim JY, Kim H, Kim E.
PMID: 30356810 | DOI: 10.3389/fncel.2018.00341

Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, neuronal and brain functions, whether Shank3 expression in specific cell types distinctly contributes to mouse phenotypes remains largely unclear. In the present study, we generated two Shank3-mutant mouse lines (exons 14-16) carrying global and GABA neuron-specific deletions and characterized their electrophysiological and behavioral phenotypes. These mouse lines show similar decreases in excitatory synaptic input onto dorsolateral striatal neurons. In addition, the abnormal social and locomotor behaviors observed in global Shank3-mutant mice are strongly mimicked by GABA neuron-specific Shank3-mutant mice, whereas the repetitive and anxiety-like behaviors are only partially mimicked. These results suggest that GABAergic Shank3 (exons 14-16) deletion has strong influences on striatal excitatory synaptic transmission and social and locomotor behaviors in mice.
Beyond the H&E: Advanced Technologies for in situ Tissue Biomarker Imaging.

ILAR J.

2018 Nov 21

Himmel LE, Hackett TA, Moore JL, Adams WR, Thomas G, Novitskaya T, Caprioli RM, Zijlstra A, Mahadevan-Jansen A, Boyd KL.
PMID: 30462242 | DOI: 10.1093/ilar/ily004

For decades, histopathology with routine hematoxylin and eosin staining has been and remains the gold standard for reaching a morphologic diagnosis in tissue samples from humans and veterinary species. However, within the past decade, there has been exponential growth in advanced techniques for in situ tissue biomarker imaging that bridge the divide between anatomic and molecular pathology. It is now possible to simultaneously observe localization and expression magnitude of multiple protein, nucleic acid, and molecular targets in tissue sections and apply machine learning to synthesize vast, image-derived datasets. As these technologies become more sophisticated and widely available, a team-science approach involving subspecialists with medical, engineering, and physics backgrounds is critical to upholding quality and validity in studies generating these data. The purpose of this manuscript is to detail the scientific premise, tools and training, quality control, and data collection and analysis considerations needed for the most prominent advanced imaging technologies currently applied in tissue sections: immunofluorescence, in situ hybridization, laser capture microdissection, matrix-assisted laser desorption ionization imaging mass spectrometry, and spectroscopic/optical methods. We conclude with a brief overview of future directions for ex vivo and in vivo imaging techniques.

Adult re-expression of IRSp53 rescues NMDA receptor function and social behavior in IRSp53-mutant mice

Communications biology

2022 Aug 18

Noh, YW;Yook, C;Kang, J;Lee, S;Kim, Y;Yang, E;Kim, H;Kim, E;
PMID: 35982261 | DOI: 10.1038/s42003-022-03813-y

IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.
Human distal lung maps and lineage hierarchies reveal a bipotent progenitor

Nature

2022 Apr 01

Kadur Lakshminarasimha Murthy, P;Sontake, V;Tata, A;Kobayashi, Y;Macadlo, L;Okuda, K;Conchola, AS;Nakano, S;Gregory, S;Miller, LA;Spence, JR;Engelhardt, JF;Boucher, RC;Rock, JR;Randell, SH;Tata, PR;
PMID: 35355018 | DOI: 10.1038/s41586-022-04541-3

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
A Functional Synonymous Variant in PDGFRA Is Associated with Better Survival in Acral Melanoma

J Cancer

2020 Mar 04

Dai J, Yang L, Xu T, Si L, Cui C, Sheng X, Chi Z, Mao L, Lian B, Tang B, Bai X, Zhou L, Li S, Wang X, Yan X, Kong Y, Guo J
PMID: 32226509 | DOI: 10.7150/jca.43010

Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses. PDGF receptor alpha (PDGFRA) expression vectors with the rs2228230:C or rs2228230:T allele were constructed to evaluate the expression and signaling activity of PDGFRA. The expression of PDGFRA in AM samples was measured using in situ RNAscope hybridization and immunohistochemical staining. The association of the rs2228230 genotype with survival was analyzed in two independent AM cohorts. Results: In silico analyses indicated that the rs2228230:T allele increases the minimum free energy and reduces synonymous codon usage. The rs2228230:T allele decreased the expression of PDGFRA by reducing the stability of its mRNA and protein as well as the signaling activity of the MAPK and PI3K/AKT pathways. PDGFRA mRNA and protein expression was significantly reduced in AM tissues with the rs2228230:T allele. The progression-free survival and overall survival of AM patients with the rs2228230:T allele were significantly longer than those of patients with the CC genotype. Conclusion: Our study indicated that rs2228230:T can reduce the expression of PDGFRA and downstream signaling activity and is associated with better survival in AM patients.
Prelimbic cortex is a common brain area activated during cue‐induced reinstatement of cocaine and heroin seeking in a polydrug self‐administration rat model

Eur J Neurosci. 2018 Oct 11.

2018 Oct 11

Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Soto Del Valle F, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT.
PMID: 30307667 | DOI: 10.1111/ejn.14203

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg/infusion, 3-h/d, 18 d) or heroin (0.03 mg/kg/infusion) on alternating days (9 d for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex (mPFC), dorsal striatum (DS), nucleus accumbens (NAc), and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells were similar for the heroin and cocaine cue-activated neurons. Overall the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Serotonin modulates social responses to stressed conspecifics via insular 5-HT2C receptors in rat

Neuropharmacology

2023 May 23

Ng, AJ;Vincelette, LK;Li, J;Brady, BH;Christianson, JP;
PMID: 37230216 | DOI: 10.1016/j.neuropharm.2023.109598

Behaviors associated with distress can affect the anxiety-like states in observers and this social transfer of affect shapes social interactions among stressed individuals. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT2C) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1 μg in 0.5 μL) for the inhibitory 5-HT1A autoreceptors which silences 5-HT neuronal activity. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN60) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT2C receptor antagonist (SB242084, 1 mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT2C receptors. SB242084 administered directly into the insular cortex (5 μM in 0.5 μL bilaterally) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT2C receptor mRNA (htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons (vglut1) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT2C receptors.
Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat

bioRxiv : the preprint server for biology

2023 Feb 19

Ng, AJ;Vincelette, LK;Li, J;Brady, BH;Christianson, JP;
PMID: 36824837 | DOI: 10.1101/2023.02.18.529065

Social interaction allows for the transfer of affective states among individuals, and the behaviors and expressions associated with pain and fear can evoke anxiety-like states in observers which shape subsequent social interactions. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT 2C ) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1µg in 0.5µL) for the inhibitory 5-HT 1A autoreceptors which silences 5-HT neuronal activity via G-protein coupled inward rectifying potassium channels. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN50) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT 2C receptor antagonist (SB242084, 1mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT 2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT 2C receptors. SB242084 administered directly into the insular cortex (5µM bilaterally in 0.5µL ) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT 2C receptor mRNA ( htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons ( vglut1 ) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT 2C receptors.
Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma

NPJ precision oncology

2021 Jun 29

Goulart, MR;Watt, J;Siddiqui, I;Lawlor, RT;Imrali, A;Hughes, C;Saad, A;ChinAleong, J;Hurt, C;Cox, C;Salvia, R;Mantovani, A;Crnogorac-Jurcevic, T;Mukherjee, S;Scarpa, A;Allavena, P;Kocher, HM;
PMID: 34188166 | DOI: 10.1038/s41698-021-00192-1

Pancreatic ductal adenocarcinoma (PDAC), characterized by dense desmoplastic stroma laid down by pancreatic stellate cells (PSC), has no reliable diagnostic biomarkers for timely detection. A multi-center cohort of PDAC patients and controls (chronic pancreatitis, intra-ductal papillary neoplasms, gallstones and otherwise healthy) donated serum in an ethically approved manner. Serum PTX3 above 4.34 ng/mL has a higher sensitivity (86%, 95% confidence interval (CI): 65-97%) and specificity (86%, 95% CI: 79-91%), positive predictive value (97%) and likelihood ratio (6.05), and is superior when compared to serum CA19-9 and CEA for detection of PDAC. In vitro and ex vivo analyses of PTX3, in human PDAC samples, PSCs, cell lines and transgenic mouse model for PDAC, suggest that PTX3 originates from stromal cells, mainly PSC. In activated PSC, PTX3 secretion could be downregulated by rendering PSC quiescent using all-trans-retinoic acid (ATRA). PTX3 organizes hyaluronan in conjunction with tumor necrosis factor-stimulated gene 6 (TSG-6) and facilitates stellate and cancer cell invasion. In SCALOP clinical trial (ISRCTN96169987) testing chemo-radiotherapy without stromal targeting, PTX3 had no prognostic or predictive role. However, in STARPAC clinical trial (NCT03307148), stromal modulation by ATRA even at first dose is accompanied with serum PTX3 response in patients who later go on to demonstrate disease control but not those in whom the disease progresses. PTX3 is a putative stromally-derived biomarker for PDAC which warrants further testing in prospective, larger, multi-center cohorts and within clinical trials targeting stroma.
Evolution of Osteocrin as an activity-regulated factor in the primate brain.

Nature.

2016 Nov 09

Ataman B, Boulting GL, Harmin DA, Yang MG, Baker-Salisbury M, Yap EL, Malik AN, Mei K, Rubin AA, Spiegel I, Durresi E, Sharma N, Hu LS, Pletikos M, Griffith EC, Partlow JN, Stevens CR, Adli M, Chahrour M, Sestan N, Walsh CA, Berezovskii VK, Livingstone MS
PMID: 27830782 | DOI: 10.1038/nature20111

Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expressionnetworks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?