Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for IL-17A

ACD can configure probes for the various manual and automated assays for IL-17A for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for IL-17A (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove IL-17A filter IL-17A (9)
  • IFN-γ (7) Apply IFN-γ filter
  • IL-10 (5) Apply IL-10 filter
  • TNF-α (4) Apply TNF-α filter
  • TGF-β (4) Apply TGF-β filter
  • TBD (4) Apply TBD filter
  • IL17A (2) Apply IL17A filter
  • (-) Remove Ikbke filter Ikbke (2)
  • IL-22 (2) Apply IL-22 filter
  • CD4 (1) Apply CD4 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • HIV1 (1) Apply HIV1 filter
  • WC1 (1) Apply WC1 filter
  • CXCL9 (1) Apply CXCL9 filter
  • IL-8 (1) Apply IL-8 filter
  • IL-16 (1) Apply IL-16 filter
  • IL-1β (1) Apply IL-1β filter
  • mycobacterial 23s (1) Apply mycobacterial 23s filter
  • γδ T cell TCR (1) Apply γδ T cell TCR filter
  • IL-17F (1) Apply IL-17F filter
  • MCP-1 and CXCL1 (1) Apply MCP-1 and CXCL1 filter

Product

  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter

Research area

  • Infectious Disease (5) Apply Infectious Disease filter
  • Cancer (3) Apply Cancer filter
  • Inflammation (2) Apply Inflammation filter
  • abortion of ewes (1) Apply abortion of ewes filter
  • Immunotherpay (1) Apply Immunotherpay filter
  • Other: Veterinary Science (1) Apply Other: Veterinary Science filter

Category

  • Publications (11) Apply Publications filter
Differential regulation of IL-17A and IL-17F via STAT5 contributes to psoriatic disease

The Journal of allergy and clinical immunology

2023 May 25

Cole, S;Manghera, A;Burns, L;Barrett, J;Yager, N;Rhys, H;Skelton, A;Cole, J;Goodyear, CS;Griffiths, M;Baeten, D;Bertolini, M;Shaw, S;Al-Mossawi, H;Maroof, A;
PMID: 37244461 | DOI: 10.1016/j.jaci.2023.03.035

IL-17A has a pivotal pathogenic role in several immune-mediated inflammatory diseases. Despite sharing 50% sequence homology with IL-17A, the role of IL-17F remains less clear. Recent clinical findings suggest that dual inhibition of IL-17A and IL-17F in psoriatic disease is more efficacious than IL-17A inhibition alone, positing a pathogenic role for IL-17F.To characterize the regulation of IL-17A and IL-17F in psoriatic disease.Using both in vitro systems and lesional skin tissue from patients, we interrogated the chromosomal, transcriptional and protein expression landscape of IL-17A+ and IL-17F+ Th17 cells. Alongside established assays such as single-cell RNA sequencing, we developed a novel cytokine-capture technique that was combined with ChIP-seq and RNA-seq.We confirm a preferential elevation of IL-17F over IL-17A in psoriatic disease, and show that expression of each isoform predominantly occurs in distinct cell populations. The expression of both IL-17A and IL-17F exhibited a high degree of plasticity, with the balance between the two isoforms influenced by pro-inflammatory signaling and by anti-inflammatory drugs such as methylprednisolone. This plasticity was reflected in a broad H3K4me3 region at the IL17A-F locus, while opposing effects of STAT5/IL-2 signaling were observed for each of the two genes. Functionally, higher IL17F expression was linked to greater cell proliferation.Our data suggest there are key differences in the regulation of IL-17A and IL-17F in psoriatic disease, leading to distinct inflammatory cell populations. As such, we propose that both IL-17A and IL-17F neutralization may be required to maximally inhibit IL-17-driven pathology.
Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.

Veterinary Immunology and Immunopathology

2016 Aug 31

Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015

Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.

Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients

Mediators of Inflammation

2015 Nov 15

Christensen AB, Dige A, Vad-Nielsen J, Brinkmann CR, Bendix M, Østergaard L, Tolstrup M, Søgaard OS, Rasmussen TA, Nyengaard JR, Agnholt J, Denton PW.
PMID: - | DOI: http://dx.doi.org/10.1155/2015/120605

Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.

The pro-survival IKK-related kinase IKKepsilon integrates LPS and IL-17A signaling cascades to promote Wnt-dependent tumor development in the intestine.

Cancer Res.

2016 Mar 15

Goktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, Ladang A, Close P, Klevernic I, Olivier F, Florin A, Ehx G, Baron F, Vandereyken M, Rahmouni S, Vereecke L, Van Loo G, Büttner R, Greten F, Chariot A.
PMID: 26980769 | DOI: -

Constitutive Wnt signaling promotes intestinal cell proliferation but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the pro-inflammatory Ikk-related kinase Ikkε in Wnt-driven tumor development. We found that Ikkε was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikkε in β-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkε to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. Additionally, Ikkε was also required for lipopolysaccharide (LPS) and IL-17A-induced activation of Akt, Mek1/2, Erk1/2 and Msk1. Accordingly, genes encoding pro-inflammatory cytokines, chemokines and anti-microbial peptides were downregulated in Ikkε-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL-17A synthesis. Further studies revealed that IL-17A synergized with commensal bacteria to trigger Ikkε phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS and IL-17A-dependent signaling pathways converge on Ikkε to promote cell survival and establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.βε.

Analysis of Cytokine Gene Expression using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of Cattle Infected Experimentally by Aerosolized Mycobacterium bovis.

J Comp Pathol. 2015 Jul 16.

Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.

Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
Measuring bovine γδ T cell function at the site of Mycobacterium bovis infection.

Vet Immunol Immunopathol.

2017 Oct 27

Rusk RA, Palmer MV, Waters WR, McGill JL.
PMID: 29129226 | DOI: 10.1016/j.vetimm.2017.10.004

Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.

Evaluating the cytokine profile of the WC1+ γδ T cell subset in the ileum of cattle with the subclinical and clinical forms of MAP infection

Veterinary Immunology and Immunopathology

2018 May 19

Albarrak SM, Waters WR, Stabel JR, Hostetter JM.
PMID: - | DOI: 10.1016/j.vetimm.2018.05.003

In the present study, we evaluated expression of IFN-γ, IL-17, TNF-α, IL-10 and TGF-β by mucosal cells, including WC1+ γδ T cells, in ileal tissues taken from non-infected cattle and cattle naturally infected with Mycobacterium avium subsp paratuberculosis (MAP). Infected cattle were either in the subclinical or clinical stage of infection. We hypothesized that the cytokine profile of the WC1+ γδ T cell subset would be different between subclinical and clinical cattle. Our data indicate a significant increase in the numbers of WC1+ γδ T cells expressing IL-10 in clinical cattle compared to subclinical and non-infected cattle. We observed a significant increase in TGF-β expression by non-WC1+ cells in clinically infected cattle. Expression of IFN-γ, IL-17 and TNF-α in mucosal cells, including the WC1+ γδ T cell subset, was identified in all examined groups. However, our data indicate that the stage of infection did not significantly influence expression of these proinflammatory cytokines. This study demonstrates changes in the cytokine mRNA expression profile of mucosal cells in the ileum, and specifically WC1+ γδ T cells, as cattle progress to the clinical disease. The change is characterized by an increase in expression of anti-inflammatory cytokines.

The Immune Response in the Uteri and Placentae of Chlamydia abortus-Infected Ewes and Its Association with Pregnancy Outcomes

Pathogens (Basel, Switzerland)

2023 Jun 19

Caspe, SG;Ewing, DA;Livingstone, M;Underwood, C;Milne, E;Sargison, ND;Wattegedera, SR;Longbottom, D;
PMID: 37375536 | DOI: 10.3390/pathogens12060846

The enzootic abortion of ewes, caused by the bacterium Chlamydia abortus (C. abortus), is one of the main causes of abortion in sheep. There are multiple contributory factors, including chlamydial growth, host immune response, and hormonal balance, that result in different pregnancy outcomes, such as abortion, the birth of weak lambs that may die, or healthy lambs. This study aimed to determine the relationship between phenotypical patterns of immune cell infiltration and different pregnancy outcomes in twin-bearing sheep (both lambs born dead; one alive and one dead; both alive) when experimentally infected with C. abortus. Both the sheep uteri and placentae were collected after parturition. All samples were analysed for specific immune cell features, including cell surface antigens and the T-regulatory (Treg) cell-associated transcription factor and cytokines, by immunohistochemistry and in situ hybridisation. Some of these immunological antigens were evaluated in ovine reproductive tissues for the first time. Differential patterns of T helper/Treg cells revealed significant group effects in the placentae. It suggests the potential role that the balance of lymphocyte subsets may play in affecting different pregnancy outcomes in C. abortus-infected sheep. The present study provides novel detailed information about the immune responses observed at the maternofoetal interface in sheep at the time of pre-term abortion or lambing.
The glioblastoma multiforme tumor site promotes the commitment of tumor-infiltrating lymphocytes to the TH17 lineage in humans

Proceedings of the National Academy of Sciences of the United States of America

2022 Aug 23

Mitsdoerffer, M;Aly, L;Barz, M;Engleitner, T;Sie, C;Delbridge, C;Lepennetier, G;Öllinger, R;Pfaller, M;Wiestler, B;Rad, R;Meyer, B;Knier, B;Schmidt-Graf, F;Gempt, J;Korn, T;
PMID: 35969754 | DOI: 10.1073/pnas.2206208119

Although glioblastoma multiforme (GBM) is not an invariably cold tumor, checkpoint inhibition has largely failed in GBM. In order to investigate T cell-intrinsic properties that contribute to the resistance of GBM to endogenous or therapeutically enhanced adaptive immune responses, we sorted CD4+ and CD8+ T cells from the peripheral blood, normal-appearing brain tissue, and tumor bed of nine treatment-naive patients with GBM. Bulk RNA sequencing of highly pure T cell populations from these different compartments was used to obtain deep transcriptomes of tumor-infiltrating T cells (TILs). While the transcriptome of CD8+ TILs suggested that they were partly locked in a dysfunctional state, CD4+ TILs showed a robust commitment to the type 17 T helper cell (TH17) lineage, which was corroborated by flow cytometry in four additional GBM cases. Therefore, our study illustrates that the brain tumor environment in GBM might instruct TH17 commitment of infiltrating T helper cells. Whether these properties of CD4+ TILs facilitate a tumor-promoting milieu and thus could be a target for adjuvant anti-TH17 cell interventions needs to be further investigated.
Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis.

PLoS One.

2016 Nov 30

Palmer MV, Thacker TC, Waters WR.
PMID: 27902779 | DOI: 10.1371/journal.pone.0167471

The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host's ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M. bovis and should be considered carefully.

The pro-survival IKK-related kinase IKKepsilon integrates LPS and IL-17A signaling cascades to promote Wnt-dependent tumor development in the intestine

Cancer Res.

2016 May 01

Göktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, Ladang A, Close P, Klevernic I, Olivier F, Florin A, Ehx G, Baron F, Vandereyken M, Rahmouni S, Vereecke L, van Loo G, Büttner R, Greten FR, Chariot A.
PMID: 26980769 | DOI: 10.1158/0008-5472.CAN-15-1473

Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkε in Wnt-driven tumor development. We found that Ikkε was activated in intestinal tumors forming upon loss of the tumor suppressor Apc Genetic ablation of Ikkε in β-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkε to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkε was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding pro-inflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkε-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkε phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkε to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?