ACD can configure probes for the various manual and automated assays for IGF1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature
2022 May 11
Chen, P;Wang, W;Liu, R;Lyu, J;Zhang, L;Li, B;Qiu, B;Tian, A;Jiang, W;Ying, H;Jing, R;Wang, Q;Zhu, K;Bai, R;Zeng, L;Duan, S;Liu, C;
PMID: 35545672 | DOI: 10.1038/s41586-022-04719-9
J Proteome Res.
2018 Jul 17
Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y.
PMID: 30014700 | DOI: 10.1021/acs.jproteome.8b00135
Fetal bovine serum (FBS) is used commonly in cell culture. Charcoal-stripped FBS (CS-FBS) is used to study androgen responsiveness and androgen metabolism in cultured CaP cells. Switching CaP cells from FBS to CS-FBS may reduce activity of androgen receptor (AR), inhibit cell proliferation, or modulate intracellular androgen metabolism. Removal of proteins by charcoal stripping may cause changes in biological functions. Proteins in FBS and CS-FBS were profiled using an ion current-based quantitative platform consisting of reproducible surfactant-aided precipitation/on-pellet digestion, long-column nano-liquid chromatography (LC) separation, and ion current-based analysis (ICan). A total of 143 proteins were identified in FBS, among which 14 proteins including insulin-like growth factor 2 (IGF-2) and IGF binding protein (IGFBP)-2 and -6 were reduced in CS-FBS. IGF1 receptor (IGF1R) and insulin receptor (IR) were sensitized to IGFs in CS-FBS. IGF1 and IGF2 stimulation fully compensated for the loss of AR activity to maintain cell growth in CS-FBS. Endogenous production of IGF and IGFBPs was verified in CaP cells and clinical CaP specimens. This study provided the most comprehensive protein profiles of FBS and CS-FBS, and offered an opportunity to identify new protein regulators and signaling pathways that regulate AR activity, androgen metabolism and proliferation of CaP cells.
Developmental Cell
2017 Dec 18
Hui SP , Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, Hesselson D, Kikuchi K.
PMID: 29257949 | DOI: 10.1016/j.devcel.2017.11.010
The attenuation of ancestral pro-regenerative pathways may explain why humans do not efficiently regenerate damaged organs. Vertebrate lineages that exhibit robust regeneration, including the teleost zebrafish, provide insights into the maintenance of adult regenerative capacity. Using established models of spinal cord, heart, and retina regeneration, we discovered that zebrafish Treg-like (zTreg) cells rapidly homed to damaged organs. Conditional ablation of zTreg cells blocked organ regeneration by impairing precursor cell proliferation. In addition to modulating inflammation, infiltrating zTreg cells stimulated regeneration through interleukin-10-independent secretion of organ-specific regenerative factors (Ntf3: spinal cord; Nrg1: heart; Igf1: retina). Recombinant regeneration factors rescued the regeneration defects associated with zTreg cell depletion, whereas Foxp3a-deficient zTreg cells infiltrated damaged organs but failed to express regenerative factors. Our data delineate organ-specific roles for Treg cells in maintaining pro-regenerative capacity that could potentially be harnessed for diverse regenerative therapies.
Cell Metab.
2017 Jul 05
Riera CE, Tsaousidou E, Halloran J, Follett P, Hahn O, Pereira MMA, Ruud LE, Alber J, Tharp K, Anderson CM, Brönneke H, Hampel B, Filho CDM, Stahl A, Brüning JC, Dillin A.
PMID: 28683287 | DOI: 10.1016/j.cmet.2017.06.015
Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance. Reduced olfactory input stimulates sympathetic nerve activity, resulting in activation of β-adrenergic receptors on white and brown adipocytes to promote lipolysis. Conversely, conditional ablation of the IGF1 receptor in OSNs enhances olfactory performance in mice and leads to increased adiposity and insulin resistance. These findings unravel a new bidirectional function for the olfactory system in controlling energy homeostasis in response to sensory and hormonal signals.
Scientific reports
2021 Jun 09
Sprimont, L;Janssen, P;De Swert, K;Van Bulck, M;Rooman, I;Gilloteaux, J;Massie, A;Nicaise, C;
PMID: 34108554 | DOI: 10.1038/s41598-021-91698-y
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com