Cortez, V;Livingston, B;Sharp, B;Hargest, V;Papizan, JB;Pedicino, N;Lanning, S;Jordan, SV;Gulman, J;Vogel, P;DuBois, RM;Crawford, JC;Boyd, DF;Pruett-Miller, SM;Thomas, PG;Schultz-Cherry, S;
PMID: 37290501 | DOI: 10.1016/j.mucimm.2023.05.011
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past
Journal of experimental & clinical cancer research : CR
Yao, Y;Liang, H;Fang, X;Zhang, S;Xing, Z;Shi, L;Kuang, C;Seliger, B;Yang, Q;
PMID: 33557876 | DOI: 10.1186/s13046-021-01847-4
Indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric heme-containing enzyme, catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan metabolism, which plays an important role in immunity and neuronal function. Its implication in different pathophysiologic processes including cancer and neurodegenerative diseases has inspired the development of IDO1 inhibitors in the past decades. However, the negative results of the phase III clinical trial of the would-be first-in-class IDO1 inhibitor (epacadostat) in combination with an anti-PD1 antibody (pembrolizumab) in patients with advanced malignant melanoma call for a better understanding of the role of IDO1 inhibition. In this review, the current status of the clinical development of IDO1 inhibitors will be introduced and the key pre-clinical and clinical data of epacadostat will be summarized. Moreover, based on the cautionary notes obtained from the clinical readout of epacadostat, strategies for the identification of reliable predictive biomarkers and pharmacodynamic markers as well as for the selection of the tumor types to be treated with IDO1inhibitors will be discussed.
International journal of tryptophan research : IJTR
Abu Hejleh, AP;Huck, K;Jähne, K;Tan, CL;Lanz, TV;Epping, L;Sonner, JK;Meuth, SG;Henneberg, A;Opitz, CA;Herold-Mende, C;Sahm, F;Platten, M;Sahm, K;
PMID: 36798537 | DOI: 10.1177/11786469231153111
The vascular niche of malignant gliomas is a key compartment that shapes the immunosuppressive brain tumor microenvironment (TME). The blood-brain-barrier (BBB) consisting of specialized endothelial cells (ECs) and perivascular cells forms a tight anatomical and functional barrier critically controlling transmigration and effector function of immune cells. During neuroinflammation and tumor progression, the metabolism of the essential amino acid tryptophan (Trp) to metabolites such as kynurenine has long been identified as an important metabolic pathway suppressing immune responses. Previous studies have demonstrated that indoleamine-2,3-dioxygenase-1 (IDO1), a key rate-limiting enzyme in tryptophan catabolism, is expressed within the TME of high-grade gliomas. Here, we investigate the role of endothelial IDO1 (eIDO1) expression for brain tumor immunity. Single-cell RNA sequencing data revealed that in human glioma tissue, IDO1 is predominantly expressed by activated ECs showing a JAK/STAT signaling pathway-related CXCL11+ gene expression signature. In a syngeneic experimental glioma model, eIDO1 is induced by low-dose tumor irradiation. However, cell type-specific ablation of eIDO1 in experimental gliomas did not alter frequency and phenotype of tumor-infiltrating T cells nor tumor growth. Taken together these data argue against a dominant role of eIDO1 for brain tumor immunity.
Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells
Newman, AC;Falcone, M;Huerta Uribe, A;Zhang, T;Athineos, D;Pietzke, M;Vazquez, A;Blyth, K;Maddocks, ODK;
PMID: 33831358 | DOI: 10.1016/j.molcel.2021.03.019
Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.
J Clin Oncol. 2018 Sep 28:JCO2018789602.
Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, Luke JJ, Balmanoukian AS, Schmidt EV, Zhao Y, Gong X, Maleski J, Leopold L, Gajewski TF.
PMID: 30265610 | DOI: 10.1200/JCO.2018.78.9602
Abstract PURPOSE: Tumors may evade immunosurveillance through upregulation of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. Epacadostat is a potent and highly selective IDO1 enzyme inhibitor. The open-label phase I/II ECHO-202/KEYNOTE-037 trial evaluated epacadostat plus pembrolizumab, a programmed death protein 1 inhibitor, in patients with advanced solid tumors. Phase I results on maximum tolerated dose, safety, tolerability, preliminary antitumor activity, and pharmacokinetics are reported. PATIENTS AND METHODS: Patients received escalating doses of oral epacadostat (25, 50, 100, or 300 mg) twice per day plus intravenous pembrolizumab 2 mg/kg or 200 mg every 3 weeks. During the safety expansion, patients received epacadostat (50, 100, or 300 mg) twice per day plus pembrolizumab 200 mg every 3 weeks. RESULTS: Sixty-two patients were enrolled and received one or more doses of study treatment. The maximum tolerated dose of epacadostat in combination with pembrolizumab was not reached. Fifty-two patients (84%) experienced treatment-related adverse events (TRAEs), with fatigue (36%), rash (36%), arthralgia (24%), pruritus (23%), and nausea (21%) occurring in ≥ 20%. Grade 3/4 TRAEs were reported in 24% of patients. Seven patients (11%) discontinued study treatment because of TRAEs. No TRAEs led to death. Epacadostat 100 mg twice per day plus pembrolizumab 200 mg every 3 weeks was recommended for phase II evaluation. Objective responses (per Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) occurred in 12 (55%) of 22 patients with melanoma and in patients with non-small-cell lung cancer, renal cell carcinoma, endometrial adenocarcinoma, urothelial carcinoma, and squamous cell carcinoma of the head and neck. The pharmacokinetics of epacadostat and pembrolizumab and antidrug antibody rate were comparable to historical controls for monotherapies. CONCLUSION: Epacadostat in combination with pembrolizumab generally was well tolerated and had encouraging antitumor activity in multiple advanced solid tumors.
British journal of cancer
Girithar, HN;Staats Pires, A;Ahn, SB;Guillemin, GJ;Gluch, L;Heng, B;
PMID: 37041200 | DOI: 10.1038/s41416-023-02245-7
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Hoffmann D, Dvorakova T, Stroobant V, Bouzin C, Daumerie A, Solvay M, Klaessens S, Letellier MC, Renauld JC, van Baren N, Lelotte J, Marbaix E, Van den Eynde BJ
PMID: 31806639 | DOI: 10.1158/2326-6066.CIR-19-0040
Tryptophan catabolism is used by tumors to resist immune attack. It can be catalyzed by indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO). IDO1 is frequently expressed in tumors and has been widely studied as a potential therapeutic target to reduce resistance to cancer immunotherapy. In contrast, TDO expression in tumors is not well characterized. Several human tumor cell lines constitutively express enzymatically active TDO. In human tumor samples, TDO expression has previously been detected by transcriptomics, but the lack of validated antibodies has precluded detection of the TDO protein and identification of TDO-expressing cells. Here, we developed novel TDO-specific monoclonal antibodies and confirmed by immunohistochemistry the expression of TDO in the majority of human cancers. In all hepatocarcinomas (10/10), TDO was expressed by most tumor cells. Some glioblastomas (10/39) and kidney carcinomas (1/10) also expressed TDO in tumor cells themselves but only in focal tumor areas. In addition, all cancers tested contained foci of nontumoral TDO-expressing cells, which were identified as pericytes by their expression of PDGFR? and their location in vascular structures. These TDO-expressing pericytes belonged to morphologically abnormal tumor vessels and were found in high-grade tumors in the vicinity of necrotic or hemorrhagic areas, which were characterized by neoangiogenesis. We observed similar TDO-expressing pericytes in inflammatory pulmonary lesions containing granulation tissue, and in chorionic villi, two tissue types that also feature neoangiogenesis. Our results confirm TDO as a relevant immunotherapeutic target in hepatocellular carcinoma and suggest a proangiogenic role of TDO in other cancer type