Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Heegaard, S;
PMID: 35626161 | DOI: 10.3390/cancers14102558
The pathogenesis of squamous cell neoplasms arising in the lacrimal drainage system is poorly understood, and the underlying genomic drivers for disease development remain unexplored. We aimed to investigate the genomic aberrations in carcinomas arising in the LDS and correlate the findings to human papillomavirus (HPV) status. The HPV analysis was performed using HPV DNA PCR, HPV E6/E7 mRNA in-situ hybridization, and p16 immunohistochemistry. The genomic characterization was performed by targeted DNA sequencing of 523 cancer-relevant genes. Patients with LDS papilloma (n = 17) and LDS carcinoma (n = 15) were included. There was a male predominance (68%) and a median age at diagnosis of 46.0 years (range 27.5-65.5 years) in patients with papilloma and 63.8 years (range 34.0-87.2 years) in patients with carcinoma. Transcriptional activity of the HPV E6/E7 oncogenes was detected in the whole tumor thickness in 12/15 (80%) papillomas (HPV6, 11, 16) and 10/15 (67%) squamous cell carcinomas (SCC) (HPV11: 3/15 (20%) and HPV16: 7/15 (47%)). Pathogenic variants in PIK3CA, FGFR3, AKT1, and PIK3R1, wildtype TP53, p16 overexpression, and deregulated high-risk E6/E7 transcription characterized the HPV16-positive SCC. The deregulated pattern of HPV E6/E7 expression, correlating with HPV DNA presence and p16 positivity, supports a causal role of HPV in a subset of LDS papillomas and carcinomas. The viral and molecular profile of LDS SCC resembles that of other HPV-driven SCC.
The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
Rani, AQ;Nurmemet, D;Liffick, J;Khan, A;Mitchell, D;Li, J;Zhao, B;Liu, X;
PMID: 37376685 | DOI: 10.3390/v15061388
Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation. Cancer cell lines are limited and not appropriate for studying the viral life cycle, for example, natural viral life cycles of HPV and EBV, and their persistence and latency in epithelial cells are poorly understood, since these processes are highly related to epithelial differentiation. Therefore, there is an urgent need of reliable human physiological cell models to study viral life cycle and cancer initiation. Conditional cell reprogramming (CCR) is a rapid and robust cell culture system, where the cells can be established from minimally invasive or noninvasive specimens and their lineage functions preserved during the long-term culture. These CR cells retain their ability to differentiate at air-liquid interface (ALI). Here, we recapitulated the applications of CR and ALI approaches in modeling host-virus interactions and viral-mediated tumorigenesis.