Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HPV

ACD can configure probes for the various manual and automated assays for HPV for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HPV (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (79)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • TBD (37) Apply TBD filter
  • HPV (22) Apply HPV filter
  • HPV-HR18 (18) Apply HPV-HR18 filter
  • HPV18 (7) Apply HPV18 filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • 18 (7) Apply 18 filter
  • 31 (7) Apply 31 filter
  • HPV16/18 (6) Apply HPV16/18 filter
  • 33 (6) Apply 33 filter
  • HPV16 (5) Apply HPV16 filter
  • MmuPV1 (5) Apply MmuPV1 filter
  • HPV 16 (5) Apply HPV 16 filter
  • 35 (5) Apply 35 filter
  • 52 (5) Apply 52 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • HPV E6 / E7 (4) Apply HPV E6 / E7 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV-HR7 (2) Apply HPV-HR7 filter
  • HER2 (2) Apply HER2 filter
  • HPV-18 (2) Apply HPV-18 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • HPV 18 (2) Apply HPV 18 filter
  • HR-HPV (2) Apply HR-HPV filter
  • MALAT1 (1) Apply MALAT1 filter
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • (-) Remove S100P filter S100P (1)
  • HES1 (1) Apply HES1 filter
  • LCN2 (1) Apply LCN2 filter
  • POLR2A (1) Apply POLR2A filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter

Product

  • RNAscope 2.0 Assay (31) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (76) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Other: Methods (1) Apply Other: Methods filter
  • Protocols (1) Apply Protocols filter

Category

  • Publications (79) Apply Publications filter
The distribution of novel biomarkers in carcinoma-in-situ, microinvasive, and squamous cell carcinoma of the uterine cervix.

Annals of Diagnostic Pathology (2018)

2018 Dec 14

Nicol AF, de Andrade CV, Gomes SC, Brusadelli MG, Lodin HM, Wells SI, Nuovo GJ.
| DOI: 10.1016/j.anndiagpath.2018.12.001

Importin-β, exportin-5, p16, Ki-67, Mcl1, PDL1, and cFLIP are each over-expressed in the majority of CIN 1 lesions. These biomarkers, plus HPV E6/E7 RNA, were analyzed in carcinoma-in-situ (CIS), microinvasive, and squamous cell carcinoma (SCC) of the uterine cervix and cervical carcinoma cell lines. Only p16 and Ki-67 continued to be over-expressed in CIS, with a concomitant marked increase in E6/E7 RNA. There was a highly significant increase in PDL1 expression and decrease in Ki-67 (each p < 0.001) in microinvasive cancer compared to CIS whereas p16 and E6/E7 remained stable. As the lesion progressed to SCC, p16 and E6/E7 RNA remained strongly overexpressed with a concomitant over expression of importin-β and Ki67. HPV positive Caski cells showed significant elevations of p16, importin-β, exportin-5 and PDL1 compared to the HPV negative cervical cancer cell line C33A, consistent with viral induction of these biomarkers. The data suggest that PDL1 may be a useful biomarker to differentiate CIS from microinvasive cancer and, thus, anti-PDL1 therapy may inhibit the progression of CIS to the invasive stage.
p16 immunohistochemistry in oropharyngeal squamous cell carcinoma: a comparison of antibody clones using patient outcomes and high-risk human papillomavirus RNA status.

Mod Pathol.

2017 Jun 16

Shelton J, Purgina BM, Cipriani NA, Dupont WD, Plummer D, Lewis JS Jr.
PMID: 28621317 | DOI: 10.1038/modpathol.2017.31

High-risk human papillomavirus (HPV)-related oropharyngeal squamous cell carcinomas have a more favorable prognosis than HPV-negative ones. p16 immunohistochemistry has been recommended as a prognostic test in clinical practice. Several p16 antibodies are available, and their performance has not been directly compared. We evaluated three commercially available p16 antibody clones (E6H4, JC8 and G175-405) utilizing 199 cases of oropharyngeal squamous cell carcinoma from a tissue microarray, read by three pathologists with three different cutoffs for positivity: any staining, >50% and >75%. Positive predictive values for high-risk HPV status by RNA in situ hybridization for the E6H4, JC8 and G175-405 clones were 98%, 100% and 99% at the 75% cutoff, but negative predictive values were much more variable at 86%, 69% and 56%, respectively. These improved using the 50% cutoff, becoming similar for all three antibodies. Intensity varied substantially, with 85% of E6H4, 72% of JC8 and 67% of G175-405 showing strong (3+) intensity. With Kaplan-Meier survival plots at the 75% cutoff, the E6H4 clone showed the largest differential in disease specific and overall survival between p16-positive and -negative results. Decreasing the cutoff to 50% increased correlation with HPV in situ hybridization and improved the survival differential for the JC8 and G175-405 clones without worsening of performance for the E6H4 clone. Interobserver agreement was also assessed by kappa scores and was highest for the E6H4 clone. Overall, these study results show modest but important performance differences between the three different p16 antibody clones, suggesting that the E6H4 clone performs best because of strongest staining intensity, greatest differential in outcomes between positive and negative results, lowest interobserver variability, and lowest background, nonspecific staining. The results also suggest that a 75% cutoff is very functional but that, in this patient population with high HPV incidence, 50% and any staining cutoffs may be more effective, particularly for the non-E6H4 clones.

Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model

Journal of molecular biology

2023 Apr 20

Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features

Head and neck pathology

2022 Jul 08

Lewis, JS;Smith, MH;Wang, X;Tong, F;Mehrad, M;Lang-Kuhs, KA;
PMID: 35802245 | DOI: 10.1007/s12105-022-01467-0

HPV-associated oral cavity squamous cell carcinoma (SCC) is not well-characterized in the literature, and also has a clinical significance that is poorly understood.We gathered a cohort of oral cavity (OC) SCC with nonkeratinizing morphology, either in the invasive or in situ carcinoma (or both), tested for p16 by immunohistochemistry and high risk HPV E6/E7 mRNA by RTPCR (reference standard for transcriptionally-active high risk HPV) and gathered detailed morphologic and clinicopathologic data.Thirteen patients from two institutions were proven to be HPV-associated by combined p16 and high risk HPV mRNA positivity. All 13 patients (100%) were males, all were heavy smokers (average 57 pack/year), and most were active drinkers (9/11 or 81.8%). All 13 (100%) involved the tongue and/or floor of mouth. All had nonkeratinizing features, but maturing squamous differentiation varied widely (0-90%; mean 37.3%). Nonkeratinizing areas had high N:C ratios and larger nests, frequently with pushing borders, and minimal (or no) stromal desmoplasia. The carcinoma in situ, when present, was Bowenoid/nonkeratinizing with cells with high N:C ratios, full thickness loss of maturation, and abundant apoptosis and mitosis. HPV was type 16 in 11 patients (84.6%) and type 33 in two (15.4%). Nine patients had treatment data available. These underwent primary surgical resection with tumors ranging from 1.6 to 5.2 cm. Most had bone invasion (6/9-66.7% were T4a tumors), and most (6/9-66.7%) had extensive SCC in situ with all 6 of these patients having final margins positive for in situ carcinoma.HPV-associated OCSCC is an uncommon entity that shows certain distinct clinical and pathologic features. Recognition of these features may help pathologic diagnosis and could potentially help guide clinical management.
Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method.

JAMA Oncol.

2016 Dec 08

D'Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, Rettig E, Ryan WR, Ha PK, Kang H, Bishop J, Quon H, Kiess AP, Richmon JD, Eisele DW, Fakhry C.
PMID: 27930766 | DOI: 10.1001/jamaoncol.2016.3067

Abstract

IMPORTANCE:

Human papillomavirus (HPV) causes an increasing proportion of oropharyngeal squamous cell carcinomas (OPSCCs), particularly in white men. The prevalence of HPV among other demographic groups and other anatomic sites of HNSCC is unclear.

OBJECTIVE:

To explore the role of HPV tumor status among women and nonwhites with OPSCC and patients with nonoropharyngeal head and neck squamous cell carcinoma (non-OP HNSCC).

DESIGN, SETTING, AND PARTICIPANTS:

Retrospective cohort study at 2 tertiary academic centers including cases diagnosed 1995 through 2012, oversampled for minorities and females. A stratified random sample of 863 patients with newly diagnosed SCC of the oral cavity, oropharynx, larynx, or nasopharynx was used.

MAIN OUTCOMES AND MEASURES:

Outcomes were HPV status as measured by p16 immunohistochemical analysis, HPV16 DNA in situ hybridization (ISH), and high-risk HPV E6/E7 mRNA ISH.

RESULTS:

Of 863 patients, 551 (63.9%) were male and median age was 58 years (interquartile range, 51-68 years). Among 240 OPSCCs, 144 (60%) were p16 positive (p16+), 115 (48%) were HPV16 DNA ISH positive (ISH16+), and 134 (56%) were positive for any oncogenic HPV type (ISH+). From 1995 to 2012, the proportion of p16+ OPSCC increased significantly among women (from 29% to 77%; P = .005 for trend) and men (36% to 72%; P < .001 for trend), as well as among whites (39% to 86%; P < .001 for trend) and nonwhites (32% to 62%; P = .02 for trend). Similar results were observed for ISH+ OPSCC (P ≤ .01 for all). Among 623 non-OP HNSCCs, a higher proportion were p16+ compared with ISH positive (62 [10%] vs 30 [5%]; P = .001). A high proportion (26 of 62 [42%]) of these p16+ non-OP HNSCCs were found in sites adjacent to the oropharynx. The proportion of p16+ and ISH+ non-OP HNSCCs were similar by sex. Over time, the proportion of non-OP HNSCCs that were p16+ (or ISH+) increased among whites (P = .04 for trend) but not among nonwhites (each P > .51 for trend). Among OPSCCs, p16 had high sensitivity (100%), specificity (91%), and positive (93%) and negative predictive value (100%) for ISH positivity. In non-OP HNSCCs, p16 had lower sensitivity (83%) and positive predictive value (40%) but high specificity (94%) and negative predictive value (99%) for ISH positivity.

CONCLUSIONS AND RELEVANCE:

During 1995 through 2012, the proportion of OPSCCs caused by HPV has increased significantly. This increase was not restricted to white men but was a consistent trend for women and men, as well as for white and nonwhite racial groups. Few non-OP HNSCCs were HPV related. P16 positivity was a good surrogate for ISH+ tumor status among OPSCC, but not a good surrogate for non-OP HNSCC.

Prognostic stratification of HPV associated oropharyngeal cancer based on CD103+ immune cell abundance in patients treated on TROG 12.01 and De-ESCALaTE randomised trials

Annals of oncology : official journal of the European Society for Medical Oncology

2022 May 04

Rischin, D;Mehanna, H;Young, RJ;Bressel, M;Dunn, J;Corry, J;Soni, P;Fulton-Lieuw, T;Iqbal, G;Kenny, L;Porceddu, S;Wratten, C;Robinson, M;Solomon, BJ;Trans-Tasman Radiation Oncology Group and the De-ESCALaTE HPV Trial Group, ;
PMID: 35525376 | DOI: 10.1016/j.annonc.2022.04.074

High CD103+ intratumoral immune cell (ITIC) abundance is associated with better prognosis in unselected patients with human papilloma virus associated oropharyngeal squamous cell carcinoma(HPV-associated OPSCC) treated with cisplatin and radiotherapy(CIS/RT). Substituting cetuximab(CETUX) for CIS with RT in HPV-associated OPSCC resulted in inferior efficacy. Our aim was to determine if quantification of ITIC CD103 could be used to identify a population of HPV-associated OPSCC with superior prognosis.We pooled data from the TROG 12.01 and De-ESCALaTE randomised trials that compared CETUX/70GyRT with CIS/70GyRT in low risk HPV-associated OPSCC: AJCC 7th Stage III (excluding T1-2N1) or stage IV (excluding N2b-c if smoking history >10 pack years and/or distant metastases), including all patients with available tumor samples. The primary endpoint was failure-free survival (FFS) in patients receiving CETUX/ RT comparing CD103+ ITIC high (>30%) versus low (<30%). High/low CD103 were compared using Cox regression adjusting for age, stage and trial.Tumor samples were available in 159/182 patients on TROG 12.01 and 145/334 on De-ESCALaTE. CD103+ ITIC abundance was high in 27% of patients. The median follow-up was 3.2 years. The 3-year FFS in patients treated with CETUX/RT were 93% (95% CI: 79-98%) in high CD103 and 74% (95% CI: 63-81%) in low CD103, adjusted HR 0.22 (95% CI: 0.12-0.41); p<0.001. The 3-year overall survival in patients treated with CETUX/RT was 100% in high CD103 and 86% (95% CI: 76-92%) in low CD103, p<0.001. In patients treated with CIS/RT there was no significant difference in FFS.CD103+ ITIC expression separates CETUX/RT treated low risk HPV-associated OPSCC into excellent and poor prognosis subgroups. The high CD103 population is a rational target for de-intensification trials.
ER-positive endocervical adenocarcinoma mimicking endometrioid adenocarcinoma in morphology and immunohistochemical profile: A case report of application of HPV RNAscope detection

Medicine

2021 Apr 02

Chen, R;Qin, P;Luo, Q;Yang, W;Tan, X;Cai, T;Jiang, Q;Chen, H;
PMID: 33787580 | DOI: 10.1097/MD.0000000000024927

Usual-type endocervical adenocarcinoma (ECA), high-risk HPV associated, is the most common type of glandular carcinoma in the endocervix. Mucin-depleted usual-type ECA is 1 end of morphological lineage of usual-type ECA and morphologically may show endometrioid features, which could cause diagnostic challenge with uterine endometrioid adenocarcinoma (EEC) and primary endometrioid ECA, especially in the setting of small biopsy and endocervical curettage (ECC). A 37-year-old women presented with dyspareunia for 1 year, showing atypical glandular cell on a liquid-based Pap TCT examination and positive for HPV16 detection. ECC showed EEC in another hospital based on its "endometrioid" morphology and immunohistochemical profiles (ER/PR/PAX8 strongly positive, though p16 also strongly positive). The specimen of hysterectomy in our hospital displayed a lesion confined to the uterine cervix showing the same morphology and immunohistochemical profiles as ECC. Finally, we successfully performed HPV RNAscope and detected high-risk human papilloma virus (HPV) E6/E7 mRNA particles in tumor cells in situ, which warranted usual-type ECA with mucin-depleted feature, a rare deviation of usual-type of ECA. The patient underwent total hysterectomy with lymph node dissection. To date, 14 months after surgery, the patient is well without recurrence or distant metastasis, and undergoes regular reexamination. We report a rare case of mucin-depleted usual-type ECA showing overlapping morphological and immunohistochemical profiles with EEC. The pathological diagnosis was confirmed by high-risk HPV RNAscope detection which is superior than immunohistochemistry to identify usual-type ECA, warranting an important role in assisting the diagnosis of morphological vague cases.
Correlation of p16 immunohistochemistry in FNA biopsies with corresponding tissue specimens in HPV-related squamous cell carcinomas of the oropharynx.

Cancer Cytopathol. 2015 Aug 4.

Jalaly JB, Lewis JS Jr, Collins BT, Wu X, Ma XJ, Luo Y, Bernadt CT.
PMID: 26242494 | DOI: 10.1002/cncy.21600.

Abstract BACKGROUND: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (SCC) is a unique form of carcinoma that is important to identify for prognosis and treatment. Immunohistochemistry (IHC) for p16 (also known as cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1) is used as a surrogate marker for transcriptionally active, high-risk HPV. The primary objective of this study was to correlate p16 IHC of cell blocks from fine-needle aspirations (FNAs) with surgical pathology specimens of HPV-related oropharyngeal SCC. METHODS: In total, 48 patients who had a diagnosis of oropharyngeal or nonoropharyngeal SCC and also had an FNA that demonstrated metastatic SCC with available cell block material were identified. IHC for p16 was evaluated on both FNA cell blocks and surgical pathology specimens. In situ hybridization for high-risk HPV messenger RNA was performed on 31 of the FNA cell blocks. RESULTS: Although partial p16 staining was observed in the majority of cell blocks, there was concordance in 47 of 48 FNAs (98%) with surgical pathology specimens when strong positive p16 staining of at least 15% of tumor cells in FNA cell block material was present. In addition, high-risk HPV RNA in situ hybridization demonstrated a high correlation with p16 staining in surgical pathology specimens (96%) and FNAs (93%). CONCLUSIONS: There was excellent correlation between p16 IHC of FNA cell blocks and surgical pathology specimens using a cutoff of at least 15% positive staining in cell blocks. The recommended threshold (70% positive staining) for surgical pathology specimens may yield a high rate of false-negative results if applied to FNA cell blocks.
Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status.

Mod Pathol. 2012 Sep;25(9):1212-20.

Lewis JS Jr1, Chernock RD, Ma XJ, Flanagan JJ, Luo Y, Gao G, Wang X, El-Mofty SK (2012)
PMID: 22596101doi

Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma has unique biology and better outcomes. p16 immunostaining is used as a surrogate marker for transcriptionally active HPV. Although diffuse staining is generally accepted as positive, the significance of partial staining has not been established, nor has the cutoff for extent of p16 staining that should be used to identify a tumor as HPV-related. From three other large studies utilizing p16 immunohistochemistry, we identified all cases with partial positive staining. The p16-stained slides were reviewed by three study pathologists for staining (nuclear and cytoplasmic) extent (in quartiles), and also for percentage that was confluent (ie, back-to-back cell staining). Tumors were histologically typed (keratinizing, non-keratinizing, or non-keratinizing with maturation) and tested for high-risk HPV by RNA in-situ hybridization and reverse-transcriptase PCR. For the 16 cases, there were two 4+(13%), five 3+(31%), six 2+(38%), and three 1+(19%) p16 staining tumors. Extent of staining ranged from 5 to 90% of cells positive with 25% or more confluent staining in 4/16 (25%). Of the 16 (31%) cases, 5 were HPV-related on the basis of RNA in-situ hybridization and reverse-transcriptase PCR. All of these cases had >50% p16 staining, 4/5 (80%) had more than 25% confluent staining, and 4/7 (57%) had non-keratinizing histological features. Only one of the p16 1+/2+ tumors was HPV RNA-positive (by reverse-transcriptase PCR only and low level). All 1+/2+ cases were keratinizing type or undifferentiated. By sensitive detection methods, most partial p16-positive squamous cell carcinoma cases with >50% staining harbor transcriptionally active HPV, and most HPV+ tumors have significant amounts of confluent staining. Cases with <50% p16 staining and lacking significant confluent staining rarely harbor HPV. These results support that greater than 75% p16 staining or, alternatively, >50% staining combined with >25% confluent areas, are suitable cutoffs for defining positivity.
Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice.

Mod Pathol.

2015 Sep 25

Mirghani H, Casiraghi O, Amen F, He M, Ma XJ, Saulnier P, Lacroix L, Drusch F, Ben Lakdhar A, Saint Guily JL, Badoual C, Scoazec JY, Vielh P.
PMID: 26403782 | DOI: 10.1038/modpathol.2015.113

Abstract

Accurate screening of HPV-driven head and neck squamous cell carcinoma is a critical issue. Although there are commercial direct and indirect assays for HPV-related head and neck squamous cell carcinoma, none are ideal. Recently, a novel RNA in situ hybridization test (the RNAscope HPV-test) has been developed for the detection of high-risk HPV E6/E7 mRNA in formalin-fixed paraffin-embedded tissue. However, validation of this assay against the 'gold standard' (identification of high-risk HPV E6/E7 mRNA in fresh-frozen tissue by quantitative real-time (qRT)-PCR) has only been reported by one team. Formalin-fixed paraffin-embedded samples from 50 patients with tonsil or tongue base carcinoma were tested using the RNAscope HPV-test, p16 immunohistochemistry, and chromogenic in situ hybridization for high-risk HPV-DNA. The results were compared with those of qRT-PCR on matched fresh-frozen samples. Compared with the reference test, the sensitivity, specificity, positive, and negative predictive values of the RNAscope HPV-test and of p16 immunohistochemistry were 93%, 94%, 96%, 88% and 96%, 93%, 96%, and 93%, respectively. Five cases were discrepant between the RNAscope HPV-test and p16-immunohistochemisrty. The RNAscope HPV-test demonstrated excellent analytical performance against the 'gold standard' and is easier to interpret than chromogenic in situ hybridization. p16-immunohistochemistry also performed very well, however its main weakness is that it is an indirect marker of the presence of HPV. These data suggest that the RNAscope HPV-test is a promising test that could be developed as a clinical standard for the precise identification of HPV-driven oropharyngeal squamous cell carcinoma.

Novel In Situ Hybridization Assay for Chromogenic Single-Molecule Detection of Human Papillomavirus E6/E7 mRNA

Microbiology spectrum

2023 Feb 21

Rao, X;Zheng, L;Wei, K;Li, M;Jiang, M;Qiu, J;Zhou, Y;Ke, R;Lin, C;
PMID: 36809088 | DOI: 10.1128/spectrum.03896-22

RNA plays a vital role in the physiological and pathological processes of cells and tissues. However, RNA in situ hybridization applications in clinical diagnostics are still limited to a few examples. In this study, we developed a novel in situ hybridization assay for human papillomavirus (HPV) E6/E7 mRNA by taking advantage of specific padlock probing and rolling circle amplification, combined with chromogenic readout. We designed padlock probes for 14 types of high-risk HPV and demonstrated that E6/E7 mRNA could be visualized in situ as discrete dot-like signals using bright-field microscopy. Overall, the results are consistent with the clinical diagnostics lab's hematoxylin and eosin (H&E) staining and p16 immunohistochemistry test results. Our work thus shows the potential applications of RNA in situ hybridization for clinical diagnostics using chromogenic single-molecule detection, offering an alternative technical option to the current commercially available kit based on branched DNA technology. IMPORTANCE In situ detection of viral mRNA expression in tissue samples is of great value for pathological diagnosis to access viral infection status. Unfortunately, conventional RNA in situ hybridization assays lack sensitivity and specificity for clinical diagnostic purposes. Currently, the commercially available branched DNA technology-based single-molecule RNA in situ detection method offers satisfactory results. Here, we present our padlock probe- and rolling circle amplification-based RNA in situ hybridization assay for detecting HPV E6/E7 mRNA expression in formalin-fixed paraffin-embedded tissue sections, providing an alternative yet robust method for viral RNA in situ visualization that is also applicable to different types of diseases.
Combined squamous cell carcinoma and Merkel cell carcinoma of the vulva: Role of human papillomavirus and Merkel cell polyomavirus

JAAD Case Reports 1.4 (2015): 196-199.

Chen CH, Wu YY, Kuo KT, Liau JY, Liang CW.
PMID: http

Merkel cell carcinoma (MCC), an uncommon and highly aggressive cutaneous malignancy, usually occurs on the sun-damaged skin of the elderly and is characterized by coexpression of neuroendocrine markers and CK20, a discriminant from other types of visceral neuroendocrine neoplasias. Since the discovery of Merkel cell polyomavirus (MCV), many researchers have confirmed its presence in about 80% of cutaneous MCCs.1 Although some cutaneous MCCs were reported to be associated with squamous cell carcinomas (SCCs), such combined cases accounted for only a minor portion and the viral status appeared to be different from pure MCC.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?