ACD can configure probes for the various manual and automated assays for HPV-HR18 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Journal of molecular biology
2023 Apr 20
Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096
Cancer medicine
2021 Jun 23
Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091
J Otolaryngol Head Neck Surg.
2017 Aug 17
Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2
Am J Surg Pathol.
2018 Feb 01
Stolnicu S, Barsan I, Hoang L, Patel P, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Pike MC, Oliva E, Park KJ, Soslow RA.
PMID: 29135516 | DOI: 10.1097/PAS.0000000000000986
We sought to classify endocervical adenocarcinomas (ECAs) based on morphologic features linked to etiology (ie, human papillomavirus [HPV] infection), unlike the World Health Organization 2014 classification. The International Endocervical Adenocarcinoma Criteria and Classification (IECC criteria), described herein, distinguishes between human papillomavirus-associated adenocarcinoma (HPVA), recognized by the presence of luminal mitoses and apoptosis seen at scanning magnification, and no or limited HPVA features (nonhuman papillomavirus-associated adenocarcinoma [NHPVA]). HPVAs were then subcategorized based on cytoplasmic features (mostly to provide continuity with preexisting classification schemes), whereas NHPVAs were subclassified based on established criteria (ie, gastric-type, clear cell, etc.). Complete slide sets from 409 cases were collected from 7 institutions worldwide. Tissue microarrays representing 297 cases were constructed; immunohistochemistry (p16, p53, vimentin, progesterone receptor) and chromogenic in situ hybridization using an RNA-based probe set that recognizes 18 varieties of high-risk HPV were performed to validate IECC diagnoses. The 5 most common IECC diagnoses were usual-type (HPVA) (73% of cohort), gastric-type (NHPVA) (10%), mucinous adenocarcinoma of HPVA type, including intestinal, mucinous not otherwise specified, signet-ring, and invasive stratified mucin-producing carcinoma categories (9%), clear cell carcinoma (NHPVA) (3%) and adenocarcinoma, not otherwise specified (2%). Only 3 endometrioid carcinomas were recognized and all were NHPVA. When excluding cases thought to have suboptimal tissue processing, 90% and 95% of usual-type IECC cases overexpressed p16 and were HPV, whereas 37% and 3% of NHPVAs were p16 and HPV, respectively. The 1 HPV gastric-type carcinoma was found to have hybrid HPVA/NHPVA features on secondary review. NHPVA tumors were larger and occurred in significantly older patients, compared with HPVA tumors (P<0.001). The high-risk HPV chromogenic in situ hybridization probe set had superior sensitivity, specificity, and positive and negative predictive values (0.955, 0.968, 0.992, 0.833, respectively) compared with p16 immunohistochemistry (0.872, 0.632, 0.907, 0.545, respectively) to identify HPV-related usual carcinoma and mucinous carcinoma. IECC reliably segregates ECAs into HPVA and NHPVA types using morphology alone. This study confirms that usual-type ECAs are the most common type worldwide and that mucinous carcinomas comprise a mixture of HPVA and NHPVA, with gastric-type carcinoma being the major NHPVA type. Endometrioid and serous carcinomas of the endocervix are extraordinarily rare. Should clinical outcomes and genomic studies continue to support these findings, we recommend replacement of the World Health Organization 2014 criteria with the IECC 2017.
Chinese journal of pathology
2019 Feb 02
Zhao YH, Bai YP, Mao ML, Zhang H, Zhao XL, Yang DM, Wan HF, Liu HG.
PMID: 30695865 | DOI: 10.3760/cma.j.issn.0529-5807.2019.02.010
Objective: To observe the clinicopathologic features of oropharyngeal squamous cell carcinoma associated with human papilloma virus (OPSCC-HPV) and discuss the role and value of different in situ hybridization (ISH) detection methods for HPV in pathologic diagnosis. Methods: Fifteen cases of OPSCC-HPV were collected from Department of Pathology, Beijing Tongren Hospital, Capital Medical University from January 2016 to August 2018. These cases were diagnosed in accordance with the WHO classification of head and neck tumors. The histopathologic features and the clinicopathologic data were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of p16, Ki-67 and p53. ISH was used to detect HPV DNA (6/11 and 16/18). RNAscope technology was used to evaluate the presence of HPV mRNAs (16 and 18). Results: The mean age for the 15 patients (8 males, 7 females) was 47 years (range from 30 to 69 years). OPSCC-HPV typically presentedat an advanced clinical stage, six patients had cervical lymphadenopathy (large and cystic), seven had tonsillar swelling, one had tumor at base of tongue, and one had odynophagia. Microscopically the tumors exhibited distinctive non-keratinizing squamous cell carcinoma morphology. Cervical nodal metastases were large and cystic, with thickening of lymph node capsules. OPSCC-HPV raised from crypt epithelium and extended beneath the tonsillar surface epithelial lining as nests and lobules, often with central necrosis. Tumor cells displayed a high N: C ratio, and high mitotic and apoptotic rates. Tumor nests are often embedded within lymphoid stroma, and may be infiltrated by lymphoid cells.Fifteen cases (15/15) were strongly positive for p16; Ki-67 index were 60%-90%; they were focally positive or negative for p53. Ten cases (10/10) were negative for HPV 6/11 DNA, and one case(1/10) was focally positive for HPV16/18 DNA. Eleven cases (11/11) were strongly positive for HPV16 mRNA, one case was focally positive for HPV18 mRNA. Conclusions: OPSCC-HPV is a pathologically and clinically distinct form of head and neck squamous cell carcinoma. OPSCC-HPV is associated with high-risk HPV (type 16) in all cases. Detection of high-risk HPV16 mRNA by RNAscope is of great significance in the final diagnosis and pathogen identification.
Frontiers in medicine
2022 May 03
Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213
Infectious agents and cancer
2021 Mar 31
Zito Marino, F;Sabetta, R;Pagliuca, F;Brunelli, M;Aquino, G;Perdonà, S;Botti, G;Facchini, G;Fiorentino, F;Di Lauro, G;De Sio, M;De Vita, F;Toni, G;Borges Dos Reis, R;Neder, L;Franco, R;
PMID: 33789689 | DOI: 10.1186/s13027-021-00361-8
JAMA Network Open
2018 Aug 03
Rajendra S, Xuan W, Merrett N, Sharma P, Sharma P, Pavey D, Yang T, Santos LD, Sharaiha O, Pande G, Peter Cosman P, Wu X, Wang B.
PMID: - | DOI: 10.1001/jamanetworkopen.2018.1054
Abstract
Importance
High-risk human papillomavirus (HPV) has been associated with Barrett dysplasia and esophageal adenocarcinoma. Nevertheless, the prognostic significance of esophageal tumor HPV status is unknown.
Objective
To determine the association between HPV infection and related biomarkers in high-grade dysplasia or esophageal adenocarcinoma and survival.
Design, Setting, and Participants
Retrospective case-control study. The hypothesis was that HPV-associated esophageal tumors would show a favorable prognosis (as in viral-positive head and neck cancers). Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction, in situ hybridization for E6 and E7 messenger RNA (mRNA), and immunohistochemistry for the proteins p16INK4A and p53. Sequencing of TP53 was also undertaken. The study took place at secondary and tertiary referral centers, with 151 patients assessed for eligibility and 9 excluded. The study period was from December 1, 2002, to November 28, 2017.
Main Outcomes and Measures
Disease-free survival (DFS) and overall survival (OS).
Results
Among 142 patients with high-grade dysplasia or esophageal adenocarcinoma (126 [88.7%] male; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. Patients who were HPV positive mostly had high p16INK4A expression, low p53 expression, and wild-type TP53. There were more Tis, T1, and T2 tumors in HPV-positive patients compared with HPV-negative patients (75.7% vs 54.3%; difference, 21.4%; 95% CI, 4.6%-38.2%; P = .02). Mean DFS was superior in the HPV-positive group (40.3 vs 24.1 months; difference, 16.2 months; 95% CI, 5.7-26.8; P = .003) as was OS (43.7 vs 29.8 months; difference, 13.9 months; 95% CI, 3.6-24.3; P = .009). Recurrence or progression was reduced in the HPV-positive cohort (24.3% vs 58.1%; difference, −33.8%; 95% CI, −50.5% to −17.0%; P < .001) as was distant metastasis (8.1% vs 27.6%; difference, −19.5%; 95% CI, −31.8% to −7.2%; P = .02) and death from esophageal adenocarcinoma (13.5% vs 36.2%; difference, −22.7%; 95% CI, −37.0% to −8.3%; P = .01). Positive results for HPV and transcriptionally active virus were both associated with a superior DFS (hazard ratio [HR], 0.33; 95% CI, 0.16-0.67; P = .002 and HR, 0.44; 95% CI, 0.22-0.88; P = .02, respectively [log-rank test]). Positivity for E6 and E7 mRNA, high p16INK4Aexpression, and low p53 expression were not associated with improved DFS. On multivariate analysis, superior DFS was demonstrated for HPV (HR, 0.39; 95% CI, 0.18-0.85; P = .02), biologically active virus (HR, 0.36; 95% CI, 0.15-0.86; P = .02), E6 and E7 mRNA (HR, 0.36; 95% CI, 0.14-0.96; P = .04), and high p16 expression (HR, 0.49; 95% CI, 0.27-0.89; P = .02).
Conclusions and Relevance
Barrett high-grade dysplasia and esophageal adenocarcinoma in patients who are positive for HPV are distinct biological entities with a favorable prognosis compared with viral-negative esophageal tumors. Confirmation of these findings in larger cohorts with more advanced disease could present an opportunity for treatment de-escalation in the hope of reducing toxic effects without deleteriously affecting survival.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com