Cochrane, CR;Angelovich, TA;Byrnes, SJ;Waring, E;Guanizo, AC;Trollope, GS;Zhou, J;Vue, J;Senior, L;Wanicek, E;Jamal Eddine, J;Gartner, MJ;Jenkins, TA;Gorry, PR;Brew, BJ;Lewin, SR;Estes, JD;Roche, M;Churchill, MJ;
PMID: 35867351 | DOI: 10.1002/ana.26456
Human Immunodeficiency Virus (HIV) persistence in blood and tissue reservoirs including the brain is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the CNS reservoir is unclear. Here we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH).Total, intact and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n=18) or virologically suppressed (n=12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital PCR (ddPCR). HIV-seronegative individuals were included as controls (n=6).Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median: 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8/10 viremic and 6/9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir.Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. This article is protected by
Zerbato, JM;Avihingsanon, A;Singh, KP;Zhao, W;Deleage, C;Rosen, E;Cottrell, ML;Rhodes, A;Dantanarayana, A;Tumpach, C;Tennakoon, S;Crane, M;Price, DJ;Braat, S;Mason, H;Roche, M;Kashuba, ADM;Revill, PA;Audsley, J;Lewin, SR;
PMID: 36502576 | DOI: 10.1016/j.ebiom.2022.104391
HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown.In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy.In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue.Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation.National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
Basova, L;Lindsey, A;McGovern, A;Gaskill, P;Rosander, A;Delorme-Walker, V;ElShamy, W;Pendyala, V;Ellis, R;Cherner, M;Iudicello, J;Marcondes, M;
| DOI: 10.20944/preprints202305.0132.v1
There is a significant overlap between HIV infection and substance use disorders. Dopamine (DA) is the most abundantly upregulated neurotransmitter in Methamphetamine abuse, with receptors (DRD1-5) that are expressed by neurons as well as by a large diversity of cell types, including innate immune cells that are targets of HIV infection, making them responsive to the hyperdopaminergic environment that is characteristic of stimulant drugs. Therefore, the presence of high levels of dopamine may affect the pathogenesis of HIV, particularly in the brain. The stimulation of HIV-latently infected U1 promonocytes with DA significantly increased viral p24 levels in the supernatant at 24 hrs, suggesting effects on activation and replication. Using selective agonists to different DRDs, we found that DRD1 played a major role in activating viral transcription, followed by DRD4, which increased p24 with a slower kinetic. Transcriptome and systems biology analyses led to the identification of a cluster of genes responsive to DA, where S100A8 and S100A9 were most significantly correlated with the early increase of p24 levels following DA stimulation. Conversely, DA increased the expression of these genes’ transcripts at the protein level, respectively MRP8 and MRP14, which form a complex also known as Calprotectin. Interestingly, MRP8/14 was able to stimulate HIV transcription in latent U1 cells, and this occurred via binding to the receptor for advanced glycosylation end-product (RAGE). Using selective agonists, both DRD1 and DRD4 increased MRP8/14 on the surface and in the cytoplasm, as well as secreted in the supernatants. On the other hand, while DRD1/5 did not affect the expression of RAGE, DRD4 stimulation caused its downregulation, offering a mechanistic for the delayed effect via DRD4 on p24 increase. To cross-validate MRP8/14 as a DA signature with biomarker value, we tested its expression in HIV+ Meth users’ brains and peripheral cells. MRP8/14+ cells were more frequently identified in mesolimbic areas such as basal ganglia of HIV+ Meth+ cases compared to HIV+ non-Meth users or to controls. Likewise, MRP8/14+ CD11b+ monocytes were more frequent in HIV+ Meth users, particularly in participants with detectable viral load in the CSF. Overall, our results suggest that the MRP8 and MRP14 complex may serve as a signature to distinguish subjects using addictive substances in the context of HIV, and that this may play a role in aggravating HIV pathology by promoting viral replication in people with HIV who use Meth.