Journal of Immunological Methods
Richardson, Z;Deleage, C;Tutuka, C;Walkiewicz, M;Del Río-Estrada, P;Pascoe, R;Evans, V;Reyesteran, G;Gonzales, M;Roberts-Thomson, S;González-Navarro, M;Torres-Ruiz, F;Estes, J;Lewin, S;Cameron, P;
| DOI: 10.1016/j.jim.2021.113198
The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
Wahl, A;Al-Harthi, L;
PMID: 36639783 | DOI: 10.1186/s12977-023-00616-9
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Isnard, S;Fombuena, B;Ouyang, J;Royston, L;Lin, J;Bu, S;Sheehan, N;Lakatos, PL;Bessissow, T;Chomont, N;Klein, M;Lebouché, B;Costiniuk, CT;Routy, B;Marette, A;Routy, JP;Camu Camu Study Group, ;
PMID: 35039291 | DOI: 10.1136/bmjopen-2021-053081
Despite the success of antiretroviral therapy (ART) in transforming HIV disease into a chronic infection, people living with HIV (PLWH) remain at risk for various non-AIDS inflammatory comorbidities. Risk of non-AIDS comorbidities is associated with gut dysbiosis, epithelial gut damage and subsequent microbial translocation, and increased activation of both circulating CD4+ and CD8+ T-cells. Therefore, in addition to ART, novel gut microbiota-modulating therapies could aid in reducing inflammation and immune activation, gut damage, and microbial translocation. Among various gut-modulation strategies under investigation, the Amazonian fruit Camu Camu (CC) presents itself as a prebiotic candidate based on its anti-inflammatory and antioxidant properties in animal models and tobacco smokers.A total of 22 PLWH on ART for more than 2 years, with a viral load <50 copies/mL, a CD4 +count >200 and a CD4+/CD8 +ratio <1 (suggesting increased inflammation and risk for non-AIDS comorbidities), will be recruited in a single arm, non-randomised, interventional pilot trial. We will assess tolerance and effect of supplementation with CC in ART-treated PLWH on reducing gut damage, microbial translocation, inflammation and HIV latent reservoir by various assays.The Canadian Institutes of Health Research (CIHR)/Canadian HIV Trials Network (CTN) pilot trial protocol CTNPT032 was approved by the Natural and Non-prescription Health Products Directorate of Health Canada and the research ethics board of the McGill university Health Centre committee (number 2020-5903). Results will be made available as free access through publications in peer-reviewed journals and through the CIHR/CTN website.NCT04058392.
Fletcher, CV;Kroon, E;Schacker, T;Pinyakorn, S;Chomont, N;Chottanapund, S;Prueksakaew, P;Benjapornpong, K;Buranapraditkun, S;Phanuphak, N;Ananworanich, J;Vasan, S;Hsu, D;RV254/SEARCH 010 study Group, ;
PMID: 35184069 | DOI: 10.1097/QAD.0000000000003201
The ability of antiretroviral drugs to penetrate and suppress viral replication in tissue reservoir sites is critical for HIV remission. We evaluated antiretroviral concentrations in lymph nodes and their impact on HIV transcription.Participants of the RV254/SEARCH010 Acute HIV Infection Cohort in Thailand were enrolled. Group 1 (n = 6) initiated and continued antiretrovirals with two nucleoside reverse transcriptase inhibitors (NRTIs), dolutegravir (DTG) and mar- aviroc (MVC). Group 2 (n = 12) initiated antiretrovirals with two NRTIs as well as efavirenz and were switched to two NRTIs as well as DTG. Antiretroviral concentrations were measured by mass spectroscopy. HIV RNA+ and DNA+ cells were measured by in-situ hybridization.All participants were MSM. At lymph node biopsy, all had plasma HIV RNA less than 20 copies/ml. Group 2 had longer durations of antiretroviral and DTG use (medians of 135 and 63 weeks, respectively) compared with Group 1 (median 44 weeks for both). TFV-DP, 3TC-TP, DTG and MVC were quantifiable in all lymph node samples from participants receiving those drugs versus carbovir-triphosphate (CBV-TP) in four out of 14. Median ratios of lymph node to peripheral blood concentrations were DTG, 0.014; MVC, 6.9; CBV-TP, 0.38; 3TC-TP, 0.32; and TFV-DP, 3.78. Median inhibitory quotients [ratios of lymph node concentrations to in-vitro inhibitory levels (IC50-or-90)] were DTG, 0.8; MVC, 38.8; CBV-TP, 0.5; 3TC- TP, 4.1; and TFV-DP, 1.8. Ongoing viral transcription was detected in lymph node of all participants. Median lymph node RNA+ cells were 71 350 versus 99 750 cells/g for Groups 1 and 2, respectively (P = 0.111).MVC has enhanced lymph node penetration and thereby may contribute to more complete viral suppression in the lymph node.