Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HIV

ACD can configure probes for the various manual and automated assays for HIV for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HIV (60)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (130)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (34) Apply TBD filter
  • HIV (24) Apply HIV filter
  • SIV (14) Apply SIV filter
  • HIV-1 (10) Apply HIV-1 filter
  • SIVmac239 (6) Apply SIVmac239 filter
  • HIV1 (5) Apply HIV1 filter
  • Cd163 (2) Apply Cd163 filter
  • vpr (2) Apply vpr filter
  • HIV gag-pol (2) Apply HIV gag-pol filter
  • HIV  (2) Apply HIV  filter
  • HIV RNA (2) Apply HIV RNA filter
  • HIV DNA (2) Apply HIV DNA filter
  • Dkk3 (1) Apply Dkk3 filter
  • Axin2 (1) Apply Axin2 filter
  • GAPDH (1) Apply GAPDH filter
  • CD68 (1) Apply CD68 filter
  • CD4 (1) Apply CD4 filter
  • Dkk1 (1) Apply Dkk1 filter
  • CSF1R (1) Apply CSF1R filter
  • TSPY1 (1) Apply TSPY1 filter
  • IL34 (1) Apply IL34 filter
  • Dkk2 (1) Apply Dkk2 filter
  • Frzb (1) Apply Frzb filter
  • PDCD1 (1) Apply PDCD1 filter
  • BCL6 (1) Apply BCL6 filter
  • RRV (1) Apply RRV filter
  • RFHV (1) Apply RFHV filter
  • Sfrp2 (1) Apply Sfrp2 filter
  • Wif1 (1) Apply Wif1 filter
  • env (1) Apply env filter
  • IL-8 (1) Apply IL-8 filter
  • IFN-γ (1) Apply IFN-γ filter
  • IL-17A (1) Apply IL-17A filter
  • SIVMM32H (1) Apply SIVMM32H filter
  • IL-1β (1) Apply IL-1β filter
  • HIVgag-pol (1) Apply HIVgag-pol filter
  • pol (1) Apply pol filter
  • Slc12a3 (1) Apply Slc12a3 filter
  • nef (1) Apply nef filter
  • ADA (1) Apply ADA filter
  • HIV-1-gagpol (1) Apply HIV-1-gagpol filter
  • HHV5-IE (1) Apply HHV5-IE filter
  • HHV5-pp65 (1) Apply HHV5-pp65 filter
  • CD3 (1) Apply CD3 filter
  • Iba-1 (1) Apply Iba-1 filter
  • tat (1) Apply tat filter
  • rLCV (1) Apply rLCV filter
  • SARS-CoV-2 (1) Apply SARS-CoV-2 filter
  • Wnt (1) Apply Wnt filter
  • KSHV (1) Apply KSHV filter

Product

  • RNAscope 2.5 HD Red assay (16) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.0 Assay (9) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (8) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (6) Apply TBD filter
  • DNAscope HD Duplex Reagent Kit (5) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • HIV (64) Apply HIV filter
  • Infectious Disease (46) Apply Infectious Disease filter
  • Inflammation (24) Apply Inflammation filter
  • Neuroscience (12) Apply Neuroscience filter
  • Infectious (5) Apply Infectious filter
  • Stem cell (3) Apply Stem cell filter
  • Cancer (2) Apply Cancer filter
  • Immunology (2) Apply Immunology filter
  • Stem Cells (2) Apply Stem Cells filter
  • Addictions (1) Apply Addictions filter
  • AIDS (1) Apply AIDS filter
  • Animal Models (1) Apply Animal Models filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Antiretroviral therapy (1) Apply Antiretroviral therapy filter
  • CGT (1) Apply CGT filter
  • Covid (1) Apply Covid filter
  • Infectious Disease: HIV (1) Apply Infectious Disease: HIV filter
  • Liver (1) Apply Liver filter
  • Neuropathic pain (1) Apply Neuropathic pain filter
  • Signalling (1) Apply Signalling filter
  • SIV (1) Apply SIV filter
  • Substance Abuse disorders (1) Apply Substance Abuse disorders filter

Category

  • Publications (130) Apply Publications filter
HIV fragments detected in Kaposi sarcoma tumor cells in HIV-infected patients

Medicine

2022 Oct 28

Chen, TY;Yang, HW;Lin, DS;Huang, ZD;Chang, L;
PMID: 36316837 | DOI: 10.1097/MD.0000000000031310

Kaposi sarcoma (KS) is a malignant vascular neoplasm caused by KS-associated herpesvirus (KSHV) infection. HIV plays a major role in KS pathogenesis. KS in HIV usually produces more malignant features than classic KS. Despite the close KS-HIV relationship, no study has reported the existence of HIV in KS tissue. We used ddPCR to detect HIV and KSHV in HIV+ KS samples and classic KS control. We verified KS cell types through immunohistochemistry and applied hypersensitive in situ hybridization (ISH) to detect HIV and KSHV in tumor cells. Furthermore, we co-stained samples with ISH and immunohistochemistry to identify HIV and KSHV in specific cell types. Regarding pathological stages, the KS were nodular (58.3%), plaque (33.3%), and patch (8.3%) tumors. Moreover, ddPCR revealed HIV in 58.3% of the KS samples. ISH revealed positive Pol/Gag mRNA signals in CD34 + tumor cells from HIV + patients (95.8%). HIV signals were absent in macrophages and other inflammatory cells. Most HIV + KS cells showed scattered reactive particles of HIV and KSHV. We demonstrated that HIV could infect CD34 + tumor cells and coexist with KSHV in KS, constituting a novel finding. We hypothesized that the direct KSHV-HIV interaction at the cellular level contributes to KS oncogenesis.
Evaluation of Archival HIV DNA in Brain and Lymphoid Tissues

Journal of virology

2023 May 15

Oliveira, MF;Pankow, A;Vollbrecht, T;Kumar, NM;Cabalero, G;Ignacio, C;Zhao, M;Vitomirov, A;Gouaux, B;Nakawawa, M;Murrell, B;Ellis, RJ;Gianella, S;
PMID: 37184401 | DOI: 10.1128/jvi.00543-23

HIV reservoirs persist in anatomic compartments despite antiretroviral therapy (ART). Characterizing archival HIV DNA in the central nervous system (CNS) and other tissues is crucial to inform cure strategies. We evaluated paired autopsy brain-frontal cortex (FC), occipital cortex (OCC), and basal ganglia (BG)-and peripheral lymphoid tissues from 63 people with HIV. Participants passed away while virally suppressed on ART at the last visit and without evidence of CNS opportunistic disease. We quantified total HIV DNA in all participants and obtained full-length HIV-envelope (FL HIV-env) sequences from a subset of 14 participants. We detected HIV DNA (gag) in most brain (65.1%) and all lymphoid tissues. Lymphoid tissues had higher HIV DNA levels than the brain (P < 0.01). Levels of HIV gag between BG and FC were similar (P > 0.2), while OCC had the lowest levels (P = 0.01). Females had higher HIV DNA levels in tissues than males (gag, P = 0.03; 2-LTR, P = 0.05), suggesting possible sex-associated mechanisms for HIV reservoir persistence. Most FL HIV-env sequences (n = 143) were intact, while 42 were defective. Clonal sequences were found in 8 out of 14 participants, and 1 participant had clonal defective sequences in the brain and spleen, suggestive of cell migration. From 10 donors with paired brain and lymphoid sequences, we observed evidence of compartmentalized sequences in 2 donors. Our data further the idea that the brain is a site for archival HIV DNA during ART where compartmentalized provirus may occur in a subset of people. Future studies assessing FL HIV-provirus and replication competence are needed to further evaluate the HIV reservoirs in tissues. IMPORTANCE HIV infection of the brain is associated with adverse neuropsychiatric outcomes, despite efficient antiretroviral treatment. HIV may persist in reservoirs in the brain and other tissues, which can seed virus replication if treatment is interrupted, representing a major challenge to cure HIV. We evaluated reservoirs and genetic features in postmortem brain and lymphoid tissues from people with HIV who passed away during suppressed HIV replication. We found a differential distribution of HIV reservoirs across brain regions which was lower than that in lymphoid tissues. We observed that most HIV reservoirs in tissues had intact envelope sequences, suggesting they could potentially generate replicative viruses. We found that women had higher HIV reservoir levels in brain and lymphoid tissues than men, suggesting possible sex-based mechanisms of maintenance of HIV reservoirs in tissues, warranting further investigation. Characterizing the archival HIV DNA in tissues is important to inform future HIV cure strategies.
Multiparameter immunohistochemistry analysis of HIV DNA, RNA and immune checkpoints in lymph node tissue

Journal of Immunological Methods

2021 Dec 01

Richardson, Z;Deleage, C;Tutuka, C;Walkiewicz, M;Del Río-Estrada, P;Pascoe, R;Evans, V;Reyesteran, G;Gonzales, M;Roberts-Thomson, S;González-Navarro, M;Torres-Ruiz, F;Estes, J;Lewin, S;Cameron, P;
| DOI: 10.1016/j.jim.2021.113198

The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
HIV DNA reservoir and elevated PD-1 expression of CD4 T-cell subsets particularly persist in the terminal ileum of HIV-positive patients despite cART

HIV medicine

2021 Jan 09

Horn, C;Augustin, M;Ercanoglu, MS;Heger, E;Knops, E;Bondet, V;Duffy, D;Chon, SH;Nierhoff, D;Oette, M;Schäfer, H;Vivaldi, C;Held, K;Anderson, J;Geldmacher, C;Suárez, I;Rybniker, J;Klein, F;Fätkenheuer, G;Müller-Trutwin, M;Lehmann, C;
PMID: 33421299 | DOI: 10.1111/hiv.13031

Despite its importance as an HIV anatomic sanctuary, little is known about the characteristics of the HIV reservoir in the terminal ileum (TI). In blood, the immune checkpoint inhibitor programmed-death-1 (PD-1) has been linked to the HIV reservoir and T-cell immune dysfunction. We thus evaluated PD-1 expression and cell-associated HIV DNA in memory CD4 T-cell subsets from TI, peripheral blood (PB) and rectum (RE) of untreated and treated HIV-positive patients to identify associations between PD-1 and HIV reservoir in other sites. Using mononuclear cells from PB, TI and RE of untreated HIV-positive (N = 6), treated (n = 18) HIV-positive and uninfected individuals (n = 16), we identified and sorted distinct memory CD4 T-cell subsets by flow cytometry, quantified their cell-associated HIV DNA using quantitative PCR and assessed PD-1 expression levels using geometric mean fluorescence intensity. Combined HIV-1 RNA in situ hybridization and immunohistochemistry was performed on ileal biopsy sections. Combined antiretroviral therapy (cART)-treated patients with undetectable HIV RNA and significantly lower levels of HIV DNA in PB showed particularly high PD-1 expression in PB and TI, and high HIV DNA levels in TI, irrespective of clinical characteristics. By contrast, in treatment-naïve patients HIV DNA levels in memory CD4 T-cell subsets were high in PB and TI. Elevated PD-1 expression on memory CD4 T-cells in PB and TI despite treatment points to continuous immune dysfunction and underlines the importance of evaluating immunotherapy in reversing HIV latency and T-cell reconstitution. As HIV DNA particularly persists in TI despite cART, investigating samples from TI is crucial in understanding HIV immunopathogenesis.
HIV infection of non-classical cells in the brain

Retrovirology

2023 Jan 13

Wahl, A;Al-Harthi, L;
PMID: 36639783 | DOI: 10.1186/s12977-023-00616-9

HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses

Journal of neurovirology

2022 Feb 09

Gumbs, SBH;Kübler, R;Gharu, L;Schipper, PJ;Borst, AL;Snijders, GJLJ;Ormel, PR;van Berlekom, AB;Wensing, AMJ;de Witte, LD;Nijhuis, M;
PMID: 35138593 | DOI: 10.1007/s13365-021-01049-w

HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection

Nature communications

2022 Jul 12

Baiyegunhi, OO;Mann, J;Khaba, T;Nkosi, T;Mbatha, A;Ogunshola, F;Chasara, C;Ismail, N;Ngubane, T;Jajbhay, I;Pansegrouw, J;Dong, KL;Walker, BD;Ndung'u, T;Ndhlovu, ZM;
PMID: 35831418 | DOI: 10.1038/s41467-022-31692-8

HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition

mBio

2023 Jun 12

Kovarova, M;Wessel, SE;Johnson, CE;Anderson, SV;Cottrell, ML;Sykes, C;Cohen, MS;Garcia, JV;
PMID: 37306625 | DOI: 10.1128/mbio.02224-22

Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5. Direct penile exposure to HIV leads to systemic infection including all tissues of the MGT. HIV replication throughout the MGT was reduced 100-1,000-fold by treatment with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), resulting in the restoration of CD4+ T cell levels. Importantly, systemic preexposure prophylaxis with EFdA effectively protects from penile HIV acquisition.IMPORTANCEOver 84.2 million people have been infected by the human immunodeficiency virus type 1 (HIV-1) during the past 40 years, most through sexual transmission. Men comprise approximately half of the HIV-infected population worldwide. Sexually transmitted HIV infections in exclusively heterosexual men are acquired through the penis. However, direct evaluation of HIV infection throughout the human male genital tract (MGT) is not possible. Here, we developed a new in vivo model that permits, for the first time, the detail analysis of HIV infection. Using BLT humanized mice, we showed that productive HIV infection occurs throughout the entire MGT and induces a dramatic reduction in human CD4 T cells compromising immune responses in this organ. Antiretroviral treatment with novel drug EFdA suppresses HIV replication in all tissues of the MGT, restores normal levels of CD4 T cells and is highly efficient at preventing penile transmission.
Intact HIV proviruses persist in the brain despite viral suppression with ART

Annals of neurology

2022 Jul 22

Cochrane, CR;Angelovich, TA;Byrnes, SJ;Waring, E;Guanizo, AC;Trollope, GS;Zhou, J;Vue, J;Senior, L;Wanicek, E;Jamal Eddine, J;Gartner, MJ;Jenkins, TA;Gorry, PR;Brew, BJ;Lewin, SR;Estes, JD;Roche, M;Churchill, MJ;
PMID: 35867351 | DOI: 10.1002/ana.26456

Human Immunodeficiency Virus (HIV) persistence in blood and tissue reservoirs including the brain is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the CNS reservoir is unclear. Here we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH).Total, intact and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n=18) or virologically suppressed (n=12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital PCR (ddPCR). HIV-seronegative individuals were included as controls (n=6).Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median: 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8/10 viremic and 6/9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir.Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. This article is protected by
Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse

Retrovirology

2021 Jun 16

Endsley, JJ;Huante, MB;Naqvi, KF;Gelman, BB;Endsley, MA;
PMID: 34134725 | DOI: 10.1186/s12977-021-00559-z

Humanized mice have become an important workhorse model for HIV research. Advances that enabled development of a human immune system in immune deficient mouse strains have aided new basic research in HIV pathogenesis and immune dysfunction. The small animal features facilitate development of clinical interventions that are difficult to study in clinical cohorts, and avoid the high cost and regulatory burdens of using non-human primates. The model also overcomes the host restriction of HIV for human immune cells which limits discovery and translational research related to important co-infections of people living with HIV. In this review we emphasize recent advances in modeling bacterial and viral co-infections in the setting of HIV in humanized mice, especially neurological disease, and Mycobacterium tuberculosis and HIV co-infections. Applications of current and future co-infection models to address important clinical and research questions are further discussed.
HIV in the Brain: Identifying Viral Reservoirs and Addressing the Challenges of an HIV Cure

Vaccines

2021 Aug 05

Ash, MK;Al-Harthi, L;Schneider, JR;
PMID: 34451992 | DOI: 10.3390/vaccines9080867

Advances in antiretroviral therapy have prolonged the life of people living with HIV and diminished the level of virus in these individuals. Yet, HIV quickly rebounds after disruption and/or cessation of treatment due to significant cellular and anatomical reservoirs for HIV, which underscores the challenge for HIV cure strategies. The central nervous system (CNS), in particular, is seeded with HIV within 1-2 weeks of infection and is a reservoir for HIV. In this review, we address the paradigm of HIV reservoirs in the CNS and the relevant cell types, including astrocytes and microglia, that have been shown to harbor viral infection even with antiretroviral treatment. In particular, we focus on developmental aspects of astrocytes and microglia that lead to their susceptibility to infection, and how HIV infection propagates among these cells. We also address challenges of measuring the HIV latent reservoir, advances in viral detection assays, and how curative strategies have evolved in regard to the CNS reservoir. Current curative strategies still require optimization to reduce or eliminate the HIV CNS reservoir, and may also contribute to levels of neuroinflammation that lead to cognitive decline. With this in mind, the latent HIV reservoir in the brain should remain a prominent focus when assessing treatment options and overall viral burden in the clinic, especially in the context of HIV-associated neurocognitive disorders (HAND).
Cellular HIV Reservoirs and Viral Rebound from the Lymphoid Compartments of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine (EFdA)-Suppressed Humanized Mice.

Viruses

2019 Mar 13

Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, Kosikova G, Somsouk M, Stoddart CA.
PMID: - | DOI: 10.3390/v11030256

Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?