Journal of leukocyte biology
Waight, E;Zhang, C;Mathews, S;Kevadiya, BD;Lloyd, KCK;Gendelman, HE;Gorantla, S;Poluektova, LY;Dash, PK;
PMID: 36044375 | DOI: 10.1002/JLB.5VMR0322-161R
The HIV-1 often evades a robust antiretroviral-mediated immune response, leading to persistent infection within anatomically privileged sites including the CNS. Continuous low-level infection occurs in the presence of effective antiretroviral therapy (ART) in CD4+ T cells and mononuclear phagocytes (MP; monocytes, macrophages, microglia, and dendritic cells). Within the CNS, productive viral infection is found exclusively in microglia and meningeal, perivascular, and choroidal macrophages. MPs serve as the principal viral CNS reservoir. Animal models have been developed to recapitulate natural human HIV-1 infection. These include nonhuman primates, humanized mice, EcoHIV, and transgenic rodent models. These models have been used to study disease pathobiology, antiretroviral and immune modulatory agents, viral reservoirs, and eradication strategies. However, each of these models are limited to specific component(s) of human disease. Indeed, HIV-1 species specificity must drive therapeutic and cure studies. These have been studied in several model systems reflective of latent infections, specifically in MP (myeloid, monocyte, macrophages, microglia, and histiocyte cell) populations. Therefore, additional small animal models that allow productive viral replication to enable viral carriage into the brain and the virus-susceptible MPs are needed. To this end, this review serves to outline animal models currently available to study myeloid brain reservoirs and highlight areas that are lacking and require future research to more effectively study disease-specific events that could be useful for viral eradication studies both in and outside the CNS.
Ukah OB, Puray-Chavez M, Tedbury PR, Herschhorn A, Sodroski JG, Sarafianos SG.
PMID: 30274333 | DOI: 10.3390/v10100534
We have recently developed the first microscopy-based strategy that enables simultaneous multiplex detection of viral RNA (vRNA), viral DNA (vDNA), and viral protein. Here, we used this approach to study the kinetics of latency reactivation in cells infected with the human immunodeficiency virus (HIV). We showed the transcription of nascent vRNA from individual latently integrated and reactivated vDNA sites appearing earlier than viral protein. We further demonstrated that this method can be used to quantitatively assess the efficacy of a variety of latency reactivating agents. Finally, this microscopy-based strategy was augmented with a flow-cytometry-based approach, enabling the detection of transcriptional reactivation of large numbers of latently infected cells. Hence, these approaches are shown to be suitable for qualitative and quantitative studies of HIV-1 latency and reactivation.
Abeynaike, S;Huynh, T;Mehmood, A;Kim, T;Frank, K;Gao, K;Zalfa, C;Gandarilla, A;Shultz, L;Paust, S;
| DOI: 10.3390/v15020365
Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Pegu, A;Xu, L;DeMouth, ME;Fabozzi, G;March, K;Almasri, CG;Cully, MD;Wang, K;Yang, ES;Dias, J;Fennessey, CM;Hataye, J;Wei, RR;Rao, E;Casazza, JP;Promsote, W;Asokan, M;McKee, K;Schmidt, SD;Chen, X;Liu, C;Shi, W;Geng, H;Foulds, KE;Kao, SF;Noe, A;Li, H;Shaw, GM;Zhou, T;Petrovas, C;Todd, JP;Keele, BF;Lifson, JD;Doria-Rose, NA;Koup, RA;Yang, ZY;Nabel, GJ;Mascola, JR;
PMID: 34986348 | DOI: 10.1016/j.celrep.2021.110199
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr
Dupont, L;Bloor, S;Williamson, J;Cuesta, S;Shah, R;Teixeira-Silva, A;Naamati, A;Greenwood, E;Sarafianos, S;Matheson, N;Lehner, P;
| DOI: 10.1016/j.chom.2021.03.001
Silencing of nuclear DNA is an essential feature of innate immune responses to invading pathogens. Early in infection, unintegrated lentiviral cDNA accumulates in the nucleus yet remains poorly expressed. In HIV-1-like lentiviruses, the Vpr accessory protein enhances unintegrated viral DNA expression, suggesting Vpr antagonizes cellular restriction. We previously showed how Vpr remodels the host proteome, identifying multiple cellular targets. We now screen these using a targeted CRISPR-Cas9 library and identify SMC5-SMC6 complex localization factor 2 (SLF2) as the Vpr target responsible for silencing unintegrated HIV-1. SLF2 recruits the SMC5/6 complex to unintegrated lentiviruses, and depletion of SLF2, or the SMC5/6 complex, increases viral expression. ATAC-seq demonstrates that Vpr-mediated SLF2 depletion increases chromatin accessibility of unintegrated virus, suggesting that the SMC5/6 complex compacts viral chromatin to silence gene expression. This work implicates the SMC5/6 complex in nuclear immunosurveillance of extrachromosomal DNA and defines its targeting by Vpr as an evolutionarily conserved antagonism.
Puray-Chavez M, Tedbury PR, Huber AD, Ukah OB, Yapo V, Liu D, Ji J, Wolf JJ, Engelman AN, Sarafianos SG.
PMID: 29192235 | DOI: 10.1038/s41467-017-01693-z
Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional "bursts" of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents.
Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD, Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE.
PMID: 29402886 | DOI: 10.1038/s41467-018-02885-x
Potent antiretroviral activities and a barrier to viral resistance characterize the human immunodeficiency virus type one (HIV-1) integrase strand transfer inhibitor dolutegravir (DTG). Herein, a long-acting parenteral DTG was created through chemical modification to improve treatment outcomes. A hydrophobic and lipophilic modified DTG prodrug is encapsulated into poloxamer nanoformulations (NMDTG) and characterized by size, shape, polydispersity, and stability. Retained intracytoplasmic NMDTG particles release drug from macrophages and attenuate viral replication and spread of virus to CD4+ T cells. Pharmacokinetic tests in Balb/cJ mice show blood DTG levels at, or above, its inhibitory concentration90 of 64 ng/mL for 56 days, and tissue DTG levels for 28 days. NMDTG protects humanized mice from parenteral challenge of the HIV-1ADA strain for two weeks. These results are a first step towards producing a long-acting DTG for human use by affecting drug apparent half-life, cell and tissue drug penetration, and antiretroviral potency.
Journal of leukocyte biology
Joseph, J;Daley, W;Lawrence, D;Lorenzo, E;Perrin, P;Rao, VR;Tsai, SY;Varthakavi, V;
PMID: 36073341 | DOI: 10.1002/JLB.4MR0722-619R
Macrophages play a significant role in HIV infection and contribute to pathogenesis of comorbidities as well as establishment of the viral reservoir in people living with HIV. While CD4+ T cells are considered the main targets of HIV infection, infected macrophages resist the cytopathic effects of infection, contributing to the persistent HIV reservoir. Furthermore, activated macrophages drive inflammation and contribute to the development of comorbidities, including HIV-associated CNS dysfunction. Better understanding the role of macrophages in HIV infection, persistence, and comorbidities can lead to development of innovative therapeutic strategies to address HIV-related outcomes in people living with HIV. In October 2021, the National Institute of Mental Health and the Ragon Institute of MGH, MIT, and Harvard conducted a virtual meeting on role of macrophages in HIV infection, pathogenesis, and cure. This review article captures the key highlights from this meeting and provides an overview of interests and activities of various NIH institutes involved in supporting research on macrophages and HIV.Published 2022. This article is a U.S. Government work and is in the public domain in the USA.
Khanal, S;Cao, D;Zhang, J;Zhang, Y;Schank, M;Dang, X;Nguyen, LNT;Wu, XY;Jiang, Y;Ning, S;Zhao, J;Wang, L;Gazzar, ME;Moorman, JP;Yao, ZQ;
PMID: 36146709 | DOI: 10.3390/v14091902
The current antiretroviral therapy (ART) for human immunodeficiency virus (HIV) can halt viral replication but cannot eradicate HIV infection because proviral DNA integrated into the host genome remains genetically silent in reservoir cells and is replication-competent upon interruption or cessation of ART. CRISPR/Cas9-based technology is widely used to edit target genes via mutagenesis (i.e., nucleotide insertion/deletion and/or substitution) and thus can inactivate integrated proviral DNA. However, CRISPR/Cas9 delivery systems often require viral vectors, which pose safety concerns for therapeutic applications in humans. In this study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a non-viral formulation to develop a novel HIV gene therapy. We designed a series of gRNAs targeting different HIV genes crucial for HIV replication and tested their antiviral efficacy and cellular cytotoxicity in lymphoid and monocytic latent HIV cell lines. Compared with the scramble gRNA control, HIV-gRNA/Cas9 RNP-treated cells exhibited efficient viral suppression with no apparent cytotoxicity, as evidenced by the significant inhibition of latent HIV DNA reactivation and RNA replication. Moreover, HIV-gRNA/Cas9 RNP inhibited p24 antigen expression, suppressed infectious viral particle production, and generated specific DNA cleavages in the targeted HIV genes that are confirmed by DNA sequencing. Because of its rapid DNA cleavage, low off-target effects, low risk of insertional mutagenesis, easy production, and readiness for use in clinical application, this study provides a proof-of-concept that synthetic gRNA/Cas9 RNP drugs can be utilized as a novel therapeutic approach for HIV eradication.