Volpi CC, Pietrantonio F, Gloghini A, Fucà G, Giordano S, Corso S, Pruneri G, Antista M, Cremolini C, Fasano E, Saggio S, Faraci S, Di Bartolomeo M, de Braud F, Di Nicola M, Tagliabue E, Pupa SM, Castagnoli L.
PMID: 30837627 | DOI: 10.1038/s41598-019-40310-5
The HER2 splice variant characterized by the deletion of exon 16 and denominated as d16HER2, is associated with HER2-positive breast cancer (BC) aggressiveness, stemness, and trastuzumab susceptibility and is considered to be a "flag" of HER2 dependence. However, with the exception of quantitative real-time PCR analysis, easily reproducible assays are still lacking to clinically detect and quantify the d16HER2 expression. Further, no data on d16HER2 expression and its potential role are available in HER2-positive gastrointestinal malignancies. Here, we used a novel RNA in situ hybridization technique (BaseScope) to discriminate d16HER2 variant expression from the wild type isoform (WTHER2) and to assess their levels across different HER2-positive histological samples. Our results demonstrate the existence of outliers, with d16HER2 mRNA high scores restricted to HER2-positive gastric cancer (GC) and colorectal cancer (CRC) coupled with increased d16HER2 expression compared with BC. Consistent with previously reported data on BC, experiments performed in HER2-positive GC patient-derived xenografts suggest that increased d16HER2 expression is associated with a clinical benefit/response to single-agent trastuzumab. Therefore, d16HER2 may be considered as a "flag" of HER2 dependence in GC and can be clinically investigated as a marker of trastuzumab susceptibility in several other HER2-driven cancers, including CRC. As a clinical proof-of-concept, we indicate that high d16HER2 mRNA scores are exclusively found in patients with a long-term benefit from trastuzumab exceeding 12 months (clinical "outliers"), and that d16HER2 expression is also increased in circulating tumor-released exosomes obtained from baseline plasma samples of long-term responders.
Abstract CT204: A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors
Bauml, J;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Dees, E;
| DOI: 10.1158/1538-7445.am2021-ct204
Background: Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR confers on the macrophages the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) is overexpressed in many cancers, including but not limited to breast and gastroesophageal cancers. CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreased tumor burden and prolonged survival in relevant models. CT-0508 cells were safe in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. Methods: This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2 who have failed available therapies including anti-HER2 therapies when indicated. Filgrastim will be used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product will be manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. Group 1 subjects will receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), persistence, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others.
Damasceno KA, Ferreira E, Estrela-Lima A, Gamba Cde O, Miranda FF, Alves MR, Rocha RM, de Barros AL, Cassali GD.
PMID: 27490467 | DOI: 10.1371/journal.pone.0160419
Versican expression promotes tumor growth by destabilizing focal cell contacts, thus impeding cell adhesion and facilitating cell migration. It not only presents or recruits molecules to the cell surface, but also modulates gene expression levels and coordinates complex signal pathways. Previously, we suggested that the interaction between versican and human epidermal growth factor receptors may be directly associated with tumor aggressiveness. Thus, the expression of EGFR and HER-2 in these neoplasms may contribute to a better understanding of the progression mechanisms in malignant mammary tumors. The purpose of this study was to correlate the gene and protein expressions of EGFR and HER2 by RNA In Situ Hybridization (ISH) and immunohistochemistry (IHC), respectively, and their relationship with the versican expression in carcinomas in mixed tumors and carcinosarcomas of the canine mammary gland. The results revealed that EGFR mRNA expression showed a significant difference between in situ and invasive carcinomatous areas in low and high versican expression groups. Identical results were observed in HER-2 mRNA expression. In immunohistochemistry analysis, neoplasms with low versican expression showed greater EGFR immunostaining in the in situ areas than in invasive areas, even as the group presenting high versican expression displayed greater EGFR and HER-2 staining in in situ areas. Significant EGFR and HER-2 mRNA and protein expressions in in situ carcinomatous sites relative to invasive areas suggest that these molecules play a role during the early stages of tumor progression.
Soukhtehzari, S;Berish, RB;Fazli, L;Watson, PH;Williams, KC;
PMID: 35780131 | DOI: 10.1038/s41523-022-00442-w
Protein glycosylation, the attachment of carbohydrates onto proteins, is a fundamental process that alters the biological activity of proteins. Changes to glycosylation states are associated with many forms of cancer including breast cancer. Through immunohistological analysis of breast cancer patient tumors, we have discovered the expression of an atypical glycan-polysialic acid (polySia)-in breast cancer. Notably, we have identified polySia expression in not only tumor cells but also on tumor-infiltrating lymphocytes (TILs) and our study reveals ST8Sia4 as the predominant polysialyltransferase expressed. Evaluation of ST8Sia4 expression in tumor cells identified an association between high expression levels and poor patient outcomes whereas ST8Sia4 expression in infiltrating stromal cells was associated with good patient outcomes. Investigation into CD56, a protein known to be polysialylated, found CD56 and polySia expression on breast tumor cells and TILs. CD56 expression did not positively correlate with polySia expression except in patient tumors which expressed HER2. In these HER2 expressing tumors, CD56 expression was significantly associated with HER2 expression score. Evaluation of CD56 tumor cell expression identified a significant association between CD56 expression and poor patient outcomes. By contrast, CD56 expression on TILs was significantly associated with good clinical outcomes. Tumors with CD56+ TILs were also consistently polySia TIL positive. Interestingly, in tumors where TILs were CD56 low-to-negative, a polySia+ lymphocyte population was still identified and the presence of these lymphocytes was a poor prognostic indicator. Overall, this study provides the first detailed report of polySia and CD56 in breast cancer and demonstrates that the prognostic significance is dependent on the cell type expression within the tumor.
Kang H, Antonarakis ES, Luo J, Zheng Q, Rooper L, De Marzo AM, Westra WH, Lotan TL.
PMID: - | DOI: 10.1016/j.oraloncology.2018.06.026
The androgen receptor (AR) is a nuclear steroid receptor that binds to testosterone and dihydrotestosterone and regulates the transcription of genes leading to cell growth, differentiation and survival. AR serves as an important oncogenic signal in prostate cancers and apocrine breast cancers. Salivary duct carcinoma (SDC) is a rare subtype of head and neck cancer that is defined by an apocrine phenotype, with AR positivity by immunohistochemistry (IHC) in up to 98% of cases [1]. A recent clinical trial with leuprorelin acetate and bicalutamide has shown promising activity with an overall response rate of 42% in AR-positive salivary gland cancers, but further analyses of clinicopathological factors or biomarkers including AR expression intensity, HER2 expression, EGFR expression and HRAS mutation did not show any significant association with outcomes [2].
Abdou, Y;Barton, D;Ronczka, A;Cushing, D;Klichinsky, M;Binder, K;
| DOI: 10.1158/1538-7445.sabcs21-ot1-03-01
Adoptive T cell therapies have led to remarkable advances among patients with hematologic malignancies, but not in those with solid tumors. Macrophages are actively recruited into, and abundantly present in the solid tumor microenvironment (sTME). Tumor- associated macrophages typically evince immunosuppressive behavior, but when engineered to be proinflammatory, may be an ideal vector to administer adoptive cellular therapy in solid tumors. Furthermore, insertion of a CAR on the macrophages confers the ability to selectively recognize and phagocytose antigen overexpressing cancer cells. Additionally, CAR macrophages reprogram the sTME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) overexpression promotes tumorigenesis and is seen in many cancers, including but not limited to breast and gastroesophageal cancers (Table 1). CT-0508 is a cell product comprised of autologous monocyte-derived pro-inflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies have shown that CT-0508 induced targeted cancer cell phagocytosis while sparing normal cells, decreasing tumor burden and prolonging survival in relevant models. CT-0508 cells were safe and effective in a semi-immunocompetent mouse model of human HER2 overexpressing ovarian cancer. This is a FIH Phase 1 study to evaluate safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary evidence of efficacy of investigational product CT-0508 in approximately 18 subjects with locally advanced (unresectable) or metastatic solid tumors overexpressing HER2, who have failed available therapies including anti-HER2 therapies where indicated.Filgrastim is being used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis. The CT-0508 CAR macrophage product is manufactured, prepared and cryopreserved from mobilized peripheral blood monocytes. The study is enrolling Group 1 subjects, who receive CT-0508 infusion split over D1, 3 and 5. Subjects will be continually assessed for acute and cumulative toxicity. Dose limiting toxicities will be observed and addressed by a Safety Review Committee. Group 2 subjects will follow, and will receive the full CT-0508 infusion on D1. Pre and post treatment biopsies and blood samples will be collected to investigate correlates of safety (immunogenicity), trafficking (PCR, RNA scope), CT-0508 persistence in blood and in the tumor, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others. Clinical trial registry number: NCT04660929 Table 1.HER2 Positivity Frequencies Across Tumor TypesTumor typeHER2 positivity (%)ReferenceBladder cancer8-70Gandour-Edwards et al, 2002;Caner et al, 2008;Laé et al, 2010; Fleischmann et al, 2011;Charfi et al, 2013;Yan et al, 2015Breast cancer11.0-25.0Varga et al, 2013;Stenehjem et al, 2014Cervical cancer2.8-3.9Chavez-Blanco et al, 2004;Yan et al, 2015Colorectal cancer1.6-5.0Schuell et al, 2006;Ingold Heppner et al, 2014;Seo et al, 2014Esophageal cancer12.0-14.0König et al, 2013;Yoon et al, 2013;Wang et al, 2014Extrahepatic Cholangiocarcinoma6.3-9.0Yoshikawa et al, 2008;Yan et al, 2015Gallbladder cancer9.8-12.8Roa et al, 2014;Yan et al, 2015Gastric adenocarcinoma7.0-34.0Rüschoff et al, 2012;Hofmann et al, 2008Ovarian cancer26Slamon et al, 1989Salivary mucoepidermoid carcinomas17.6Glisson et al, 2004Salivary duct carcinoma30-40Skálová et al, 2003; Cornolti et al, 2007; Nardi et al, 2013Testicular cancer2.4Yan et al, 2015Uterine cancer3.0Yan et al, 2015 Citation Format: Yara George Abdou, Debora Barton, Amy Ronczka, Daniel Cushing, Michael Klichinsky, Kim Reiss Binder. A phase 1, first in human (FIH) study of adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor (CAR) in subjects with HER2 overexpressing solid tumors [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr OT1-03-01.
Reiss, K;Yuan, Y;Ueno, N;Abdou, Y;Barton, D;Swaby, R;Ronczka, A;Cushing, D;Abramson, S;Condamine, T;Klichinsky, M;Dees, E;
| DOI: 10.1158/1538-7445.am2022-ct524
Background: Adoptive T cell therapies have led to remarkable advances in hematologic cancers but with less effect in ST. Actively recruited tumor associated macrophages (TAM) are abundant in the ST microenvironment (TME) and typically display immunosuppressive behavior. Macrophages engineered to be proinflammatory may be an ideal vector for adoptive ST cellular therapy. Engineered CAR-M selectively recognize and phagocytose antigen overexpressing cancer cells, reprogram TME and present neoantigens to T cells, leading to epitope spreading and immune memory. Human Epidermal Growth Factor Receptor 2 (HER2) overexpression promotes tumorigenesis in many cancers (Table 1). CT-0508 is a cell product comprised of autologous monocyte-derived proinflammatory macrophages expressing an anti-HER2 CAR. Pre-clinical studies show that CT-0508 induces targeted cancer cell phagocytosis while sparing normal cells, decreases tumor burden and prolongs survival, and was safe and effective in a semi-immunocompetent mouse model of human HER2-overexpressing ovarian cancer. Methods: This FIH Phase 1 study is evaluating safety, tolerability, cell manufacturing feasibility, trafficking, and preliminary efficacy in 18 subjects with locally advanced/unresectable or metastatic ST overexpressing HER2, with progression on available therapies, including anti-HER2 therapies. Filgrastim is used to mobilize autologous hematopoietic progenitor cells for monocyte collection by apheresis prior to CT-0508 CAR macrophage infusion. Group 1 subjects receive CT-0508 on D1, 3, & 5. Group 2 subjects will receive full dose on D1. A Safety Review Committee will review dose limiting toxicities. Pre/post-treatment biopsies and blood samples will be collected for correlative analysis of immunogenicity, trafficking (PCR, RNA scope), CT-0508 persistence in blood and tumor, target antigen engagement, TME modulation (single cell RNA sequencing), immune response (TCR sequencing) and others. Table 1. Her2 Overexpression Across Tumor Types Tumor HER2 Overexpression (%) Bladder 8-70 Salivary duct 30-40 Gastric 7-34 Ovarian 26 Breast 11-25 Salivary mucoepidermoid 17.6 Esophageal 12-14 Gallbladder 9.8-12.8 Cholangiocarcinoma 6.3-9 Colorectal 1.6-5 Cervical 2.8-3.9 Uterine 3 Testicular 2.4 Citation Format: Kim A. Reiss, Yuan Yuan, Naoto T. Ueno, Yara Abdou, Debora Barton, Ramona F. Swaby, Amy Ronczka, Daniel J. Cushing, Sascha Abramson, Thomas Condamine, Michael Klichinsky, E. Claire Dees. A phase 1, first in human (FIH) study of autologous anti-HER2 chimeric antigen receptor macrophages (CAR-M) in HER2-overexpressing solid tumors (ST) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr CT524.
New Biotechnology, 29(6), 665–681.
Portier BP, Gruver AM, Huba MA, Minca EC, Cheah AL, Wang Z, Tubbs RR (2012).
PMID: 22504737 | DOI: 10.1016/j.nbt.2012.03.011.
Diagnostics in the field of breast carcinoma are constantly evolving. The recent wave of molecular methodologies, both microscope and non-microscope based, have opened new ways to gain insight into this disease process and have moved clinical diagnostics closer to a 'personalized medicine' approach. In this review we highlight some of the advancements that laboratory medicine technology is making toward guiding the diagnosis, prognosis, and therapy selection for patients affected by breast carcinoma. The content of the article is largely structured by methodology, with a distinct emphasis on both microscope based and non-microscope based diagnostic formats. Where possible, we have attempted to emphasize the potential benefits as well as limitations to each of these technologies. Successful molecular diagnostics, applied in concert within the morphologic context of a patient's tumor, are what will lay the foundation for personalized therapy and allow a more sophisticated approach to clinical trial stratification. The future of breast cancer diagnostics looks challenging, but it is also a field of great opportunity. Never before have there been such a plethora of new tools available for disease investigation or candidate therapy selection.
The Journal of Molecular Diagnostics, 14(1), 22–29.
Wang, F, Flanagan, J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y. (2012).
PMID: 22166544 | DOI: 10.1016/j.jmoldx.2011.08.002.
In situ analysis of biomarkers is highly desirable in molecular pathology because it allows the examination of biomarker status within the histopathological context of clinical specimens. Immunohistochemistry and DNA in situ hybridization (ISH) are widely used in clinical settings to assess protein and DNA biomarkers, respectively, but clinical use of in situ RNA analysis is rare. This disparity is especially notable when considering the abundance of RNA biomarkers discovered through whole-genome expression profiling. This is largely due to the high degree of technical complexity and insufficient sensitivity and specificity of current RNA ISH techniques. Here, we describe RNAscope, a novel RNA ISH technology with a unique probe design strategy that allows simultaneous signal amplification and background suppression to achieve single-molecule visualization while preserving tissue morphology. RNAscope is compatible with routine formalin-fixed, paraffin-embedded tissue specimens and can use either conventional chromogenic dyes for bright-field microscopy or fluorescent dyes for multiplex analysis. Unlike grind-and-bind RNA analysis methods such as real-time RT-PCR, RNAscope brings the benefits of in situ analysis to RNA biomarkers and may enable rapid development of RNA ISH-based molecular diagnostic assays.
Advances in Laboratory Medicine / Avances en Medicina de Laboratorio
Cereceda, K;Jorquera, R;Villarroel-Espíndola, F;
| DOI: 10.1515/almed-2021-0075
The development and subsequent adaptation of mass cytometry for the histological analysis of tissue sections has allowed the simultaneous spatial characterization of multiple components. This is useful to find the correlation between the genotypic and phenotypic profile of tumor cells and their environment in clinical-translational studies. In this revision, we provide an overview of the most relevant hallmarks in the development, implementation and application of multiplexed imaging in the study of cancer and other conditions. A special focus is placed on studies based on imaging mass cytometry (IMC) and multiplexed ion beam imaging (MIBI). The purpose of this review is to help our readers become familiar with the verification techniques employed on this tool and outline the multiple applications reported in the literature. This review will also provide guidance on the use of IMC or MIBI in any field of biomedical research.
Kwon S, Chin K, Nederlof M, Gray JW.
PMID: 29184166 | DOI: 10.1038/s41598-017-16492-1
We describe here a method, termed immunoFISH, for simultaneous in situ analysis of the composition and distribution of proteins and individual RNA transcripts in single cells. Individual RNA molecules are labeled by hybridization and target proteins are concurrently stained using immunofluorescence. Multicolor fluorescence images are acquired and analyzed to determine the abundance, composition, and distribution of hybridized probes and immunofluorescence. We assessed the ability of immunoFISH to simultaneous quantify protein and transcript levels and distribution in cultured HER2 positive breast cancer cells and human breast tumor samples. We demonstrated the utility of this assay in several applications including demonstration of the existence of a layer of normal myoepithelial KRT14 expressing cells that separate HER2+ cancer cells from the stromal and immune microenvironment in HER2+ invasive breast cancer. Our studies show that immunoFISH provides quantitative information about the spatial heterogeneity in transcriptional and proteomic features that exist between and within cells.
Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun XK, Jackson HW, Bodenmiller B.
PMID: 29289569 | DOI: 10.1016/j.cels.2017.12.001
To build comprehensive models of cellular states and interactions in normal and diseased tissue, genetic and proteomic information must be extracted with single-cell and spatial resolution. Here, we extended imaging mass cytometry to enable multiplexed detection of mRNA and proteins in tissues. Three mRNA target species were detected by RNAscope-based metal in situ hybridization with simultaneous antibody detection of 16 proteins. Analysis of 70 breast cancer samples showed that HER2 and CK19 mRNA and protein levels are moderately correlated on the single-cell level, but that only HER2, and not CK19, has strong mRNA-to-protein correlation on the cell population level. The chemoattractant CXCL10 was expressed in stromal cell clusters, and the frequency of CXCL10-expressing cells correlated with T cell presence. Our flexible and expandable method will allow an increase in the information content retrieved from patient samples for biomedical purposes, enable detailed studies of tumor biology, and serve as a tool to bridge comprehensive genomic and proteomic tissue analysis.