ACD can configure probes for the various manual and automated assays for HER2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Sci Rep.
2019 Mar 05
Volpi CC, Pietrantonio F, Gloghini A, Fucà G, Giordano S, Corso S, Pruneri G, Antista M, Cremolini C, Fasano E, Saggio S, Faraci S, Di Bartolomeo M, de Braud F, Di Nicola M, Tagliabue E, Pupa SM, Castagnoli L.
PMID: 30837627 | DOI: 10.1038/s41598-019-40310-5
The HER2 splice variant characterized by the deletion of exon 16 and denominated as d16HER2, is associated with HER2-positive breast cancer (BC) aggressiveness, stemness, and trastuzumab susceptibility and is considered to be a "flag" of HER2 dependence. However, with the exception of quantitative real-time PCR analysis, easily reproducible assays are still lacking to clinically detect and quantify the d16HER2 expression. Further, no data on d16HER2 expression and its potential role are available in HER2-positive gastrointestinal malignancies. Here, we used a novel RNA in situ hybridization technique (BaseScope) to discriminate d16HER2 variant expression from the wild type isoform (WTHER2) and to assess their levels across different HER2-positive histological samples. Our results demonstrate the existence of outliers, with d16HER2 mRNA high scores restricted to HER2-positive gastric cancer (GC) and colorectal cancer (CRC) coupled with increased d16HER2 expression compared with BC. Consistent with previously reported data on BC, experiments performed in HER2-positive GC patient-derived xenografts suggest that increased d16HER2 expression is associated with a clinical benefit/response to single-agent trastuzumab. Therefore, d16HER2 may be considered as a "flag" of HER2 dependence in GC and can be clinically investigated as a marker of trastuzumab susceptibility in several other HER2-driven cancers, including CRC. As a clinical proof-of-concept, we indicate that high d16HER2 mRNA scores are exclusively found in patients with a long-term benefit from trastuzumab exceeding 12 months (clinical "outliers"), and that d16HER2 expression is also increased in circulating tumor-released exosomes obtained from baseline plasma samples of long-term responders.
Cancer Sci.
2018 May 23
Zhang S, Fei F, Wang H, Gu Y, Li C, Wang X, Zhao Y, Li Y.
PMID: 29683229 | DOI: 10.1111/cas.13620
The initiation of spontaneous breast cancer (SBC) in Tientsin Albino 2 (TA2) mice is related to mouse mammary tumor virus (MMTV) infection, and MMTV amplification is hormonally regulated. To explore the insertion site of MMTVLTR in TA2 mouse genome, reverse PCR and nested PCR were used to amplify the unknown sequence on both sides of the MMTV-LTRSAG gene in SBC and normal breast tissue of TA2 mice. Furthermore, the clinicopathological significance of the insertion site was evaluated in 43 samples of normal breast tissue, 46 samples of breast cystic hyperplasia, 54 samples of ductal carcinoma in situ, 142 samples of primary breast cancer and 47 samples of lymph node metastatic breast cancer by RNA in situ hybridization. We confirmed that the insertion site of the MMTV-LTRSAG gene was located between Igκv2-112 and Igκv14-111 in chromosome 6 of TA2 mouse. IGκC was localized in the stromal cells of TA2 mouse with SBC and in human breast cancer tissues. Tumor cells were negative for IGκC in RNA in situ hybridization. The positive staining index of IGκC in stromal cells was the highest in lymph node metastatic breast cancer, followed by primary breast cancer, ductal carcinoma in situ, and breast cystic hyperplasia. Furthermore, the positive staining index of IGκC was related to the expression of ER, PR, HER2 and Ki-67. Our findings showed that stromal IGκC expression was associated with the initiation of SBC in TA2 mice. IGκC may be a high-risk factor for the initiation and progression of human breast cancer.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com