ACD can configure probes for the various manual and automated assays for GLI1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Neurooncol. 2014 May 28.
Abiria SA, Williams TV, Munden AL, Grover VK, Wallace A, Lundberg CJ, Valadez JG, Cooper MK.
PMID: 24867209
Sci Rep.
2018 Sep 28
Takizawa N, Tanaka S, Oe S, Koike T, Yoshida T, Hirahara Y, Matsuda T, Yamada H.
PMID: 30266964 | DOI: 10.1038/s41598-018-32870-9
Bilateral adrenalectomy forces the patient to undergo glucocorticoid replacement therapy and bear a lifetime risk of adrenal crisis. Adrenal autotransplantation is considered useful to avoid adrenal crisis and glucocorticoid replacement therapy. However, the basic process of regeneration in adrenal autografts is poorly understood. Here, we investigated the essential regeneration factors in rat adrenocortical autografts, with a focus on the factors involved in adrenal development and steroidogenesis, such as Hh signalling. A remarkable renewal in cell proliferation and increase in Cyp11b1, which encodes 11-beta-hydroxylase, occurred in adrenocortical autografts from 2-3 weeks after autotransplantation. Serum corticosterone and adrenocorticotropic hormone levels were almost recovered to sham level at 4 weeks after autotransplantation. The adrenocortical autografts showed increased Dhh expression at 3 weeks after autotransplantation, but not Shh, which is the only Hh family member to have been reported to be expressed in the adrenal gland. Increased Gli1 expression was also found in the regenerated capsule at 3 weeks after autotransplantation. Dhh and Gli1 might function in concert to regenerate adrenocortical autografts. This is the first report to clearly show Dhh expression and its elevation in the adrenal gland.
Liu Y, Feng J, Li J, Zhao H, Ho TV, Chai Y.
PMID: 26293299
Sci Rep. 2019 Jan 18;9(1):226.
2019 Jan 18
Lim Y, Cho IT, Shi X, Grinspan JB, Cho G, Golden JA.
PMID: PMID: 30659230 | DOI: DOI:10.1038/s41598-018-36194-6
Nat Cell Biol.
2016 Mar 21
Li L, Grausam KB, Wang J, Lun MP, Ohli J, Lidov HG, Calicchio ML, Zeng E, Salisbury JL, Wechsler-Reya RJ, Lehtinen MK, Schüller U, Zhao H.
PMID: 26999738 | DOI: 10.1038/ncb3327
Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.
Nat Neurosci.
2016 May 23
Wang L, Hou S, Han YG.
PMID: 27214567 | DOI: 10.1038/nn.4307.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
Proc Natl Acad Sci U S A. 2018 Dec 12.
2018 Dec 12
Mathieu M, Drelon C, Rodriguez S, Tabbal H, Septier A, Damon-Soubeyrand C, Dumontet T, Berthon A, Sahut-Barnola I, Djari C, Batisse-Lignier M, Pointud JC, Richard D, Kerdivel G, Calméjane MA, Boeva V, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P.
PMID: 30541888 | DOI: 10.1073/pnas.1809185115
Nat Commun.
2019 Feb 27
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS.
PMID: 30814516 | DOI: 10.1038/s41467-019-08520-7
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis.
Science (New York, N.Y.)
2023 Jun 02
Tu, HQ;Li, S;Xu, YL;Zhang, YC;Li, PY;Liang, LY;Song, GP;Jian, XX;Wu, M;Song, ZQ;Li, TT;Hu, HB;Yuan, JF;Shen, XL;Li, JN;Han, QY;Wang, K;Zhang, T;Zhou, T;Li, AL;Zhang, XM;Li, HY;
PMID: 37262147 | DOI: 10.1126/science.abm1962
Nature communications
2022 Nov 14
Kaucka, M;Joven Araus, A;Tesarova, M;Currie, JD;Boström, J;Kavkova, M;Petersen, J;Yao, Z;Bouchnita, A;Hellander, A;Zikmund, T;Elewa, A;Newton, PT;Fei, JF;Chagin, AS;Fried, K;Tanaka, EM;Kaiser, J;Simon, A;Adameyko, I;
PMID: 36376278 | DOI: 10.1038/s41467-022-34266-w
Development (Cambridge, England)
2021 Oct 26
Marczenke, M;Sunaga-Franze, DY;Popp, O;Althaus, IW;Sauer, S;Mertins, P;Christ, A;Allen, BL;Willnow, TE;
PMID: 34698766 | DOI: 10.1242/dev.200080
PLoS Genet.
2016 Jul 14
Perdigoto CN, Dauber KL, Bar C, Tsai PC, Valdes VJ, Cohen I, Santoriello FJ, Zhao D, Zheng D, Hsu YC, Ezhkova E.
PMID: 27414999 | DOI: 10.1371/journal.pgen.1006151.
An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signalingpathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required forMerkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel celldifferentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com