Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for FOS

ACD can configure probes for the various manual and automated assays for FOS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for FOS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • FOS (73) Apply FOS filter
  • DRD2 (14) Apply DRD2 filter
  • DRD1 (11) Apply DRD1 filter
  • Crh (10) Apply Crh filter
  • SLC32A1 (9) Apply SLC32A1 filter
  • AGRP (8) Apply AGRP filter
  • vGlut2 (8) Apply vGlut2 filter
  • Gad1 (7) Apply Gad1 filter
  • TH (6) Apply TH filter
  • Slc17a6 (6) Apply Slc17a6 filter
  • Prkcd (5) Apply Prkcd filter
  • Sst (5) Apply Sst filter
  • Penk (5) Apply Penk filter
  • Pomc (5) Apply Pomc filter
  • Slc17a7 (5) Apply Slc17a7 filter
  • CCK (4) Apply CCK filter
  • GLP1R (4) Apply GLP1R filter
  • (-) Remove Drd1a filter Drd1a (4)
  • TAC1 (4) Apply TAC1 filter
  • Adcyap1 (4) Apply Adcyap1 filter
  • Pdyn (4) Apply Pdyn filter
  • tdTomato (4) Apply tdTomato filter
  • VGAT (4) Apply VGAT filter
  • Npy (3) Apply Npy filter
  • Gad2 (3) Apply Gad2 filter
  • Nts (3) Apply Nts filter
  • ZsGreen (3) Apply ZsGreen filter
  • TBD (3) Apply TBD filter
  • ADRA2A (2) Apply ADRA2A filter
  • Dbh (2) Apply Dbh filter
  • (-) Remove AVP filter AVP (2)
  • CALCA (2) Apply CALCA filter
  • Avpr1a (2) Apply Avpr1a filter
  • CNR1 (2) Apply CNR1 filter
  • GCG (2) Apply GCG filter
  • Oxt (2) Apply Oxt filter
  • Oxtr (2) Apply Oxtr filter
  • Phox2b (2) Apply Phox2b filter
  • Egr2 (2) Apply Egr2 filter
  • Calb2 (2) Apply Calb2 filter
  • MBP (2) Apply MBP filter
  • Chat (2) Apply Chat filter
  • OPRM1 (2) Apply OPRM1 filter
  • Trpv1 (2) Apply Trpv1 filter
  • Npas4 (2) Apply Npas4 filter
  • CARTPT (2) Apply CARTPT filter
  • Crhr2 (2) Apply Crhr2 filter
  • mCherry (2) Apply mCherry filter
  • Slc17a8 (2) Apply Slc17a8 filter
  • Nr4a1 (2) Apply Nr4a1 filter

Product

  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (5) Apply Neuroscience filter
  • Endocrinology (1) Apply Endocrinology filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • vasopressin (1) Apply vasopressin filter

Category

  • (-) Remove Publications filter Publications (6)
Isoflurane rapidly modifies synaptic and cytoskeletal phosphoproteomes of the supraoptic nucleus of the hypothalamus and the cortex

Neuroendocrinology

2023 Jun 02

Bárez-López, S;Gadd, GJ;Pauža, AG;Murphy, D;Greenwood, MP;
PMID: 37271138 | DOI: 10.1159/000531352

Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of general anaesthesia. In order to identify potential phosphorylation events in the brain mediating general anaesthesia effects, we have explored the phosphoproteome responses in the rat SON, and compared these to cingulate cortex (CC) which displays no FOS activation is response to general anaesthetics.Adult Sprague-Dawley rats were treated with isoflurane for 15 minutes. Proteins from the CC and SON were extracted and processed for Nano-LC Mass Spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS.We found many changes in the phosphoproteomes of both the CC and SON in response to 15 minutes of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region-specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to general anaesthesia between the CC and SON.In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating general anaesthesia.S. Karger AG, Basel.
The Anterior Insular Cortex--> Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management

Neuron

2017 Oct 11

Venniro M, Caprioli D, Zhang M, Whitaker LR, Zhang S, Warren BL, Cifani C, Marchant NJ, Yizhar O, Bossert JM, Chiamulera C, Morales M, Shaham Y.
PMID: 29024664 | DOI: 10.1016/j.neuron.2017.09.024

Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention.

Dopamine-inhibited POMCDrd2+ neurons in the ARC acutely regulate feeding and body temperature

JCI insight

2022 Nov 08

Gaziano, I;Corneliussen, S;Biglari, N;Neuhaus, R;Shen, L;Sotelo-Hitschfeld, T;Klemm, P;Steuernagel, L;De Solis, AJ;Chen, W;Wunderlich, FT;Kloppenburg, P;Brüning, JC;
PMID: 36345942 | DOI: 10.1172/jci.insight.162753

Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.
Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice.

Pharmacology Biochemistry and Behavior

2019 May 02

Lewis MH, Rajpal H, Muehlmann AM.
PMID: - | DOI: 10.1016/j.pbb.2019.04.006

Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fospositive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.

Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release

Molecular metabolism

2023 Feb 10

Greenwood, MP;Greenwood, M;Bárez-López, S;Hawkins, JW;Short, K;Tatovic, D;Murphy, D;
PMID: 36773648 | DOI: 10.1016/j.molmet.2023.101692

The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release.We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland.We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis.In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.
Changes in appetitive associative strength modulates nucleus accumbens, but not orbitofrontal cortex neuronal ensemble excitability.

J Neurosci.

2017 Feb 17

Ziminski J, Hessler S, Margetts-Smith G, Sieburg MC, Crombag HS, Koya E.
PMID: 28213443 | DOI: 10.1523/JNEUROSCI.3766-16.2017

Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, animals may adapt accordingly by inhibiting food seeking responses. Sparsely activated sets of neurons, coined neuronal ensembles, have been shown to encode the strength of reward-cue associations. While alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice following appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. Following extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENTSparsely distributed sets of neurons called 'neuronal ensembles' encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that occur specifically on neuronal ensembles that encode appetitive associations. Here we reveal that sucrose cue exposure recruited a more excitable ensemble in the nucleus accumbens, but not orbitofrontal cortex compared to their surrounding neurons. This excitability difference was not observed when the cue's salience was diminished following extinction learning. These novel data provide evidence that the intrinsic excitability of appetitive memory-encoding ensembles is differentially regulated across brain areas and dynamically adapts to changes in associative strength.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?