ACD can configure probes for the various manual and automated assays for FGF2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Endocrinology.
2016 Oct 12
Burt PM, Xiao L, Dealy C, Fisher MC, Hurley MM.
PMID: 27732085 | DOI: 10.1210/en.2016-1548
Humans with X-linked hypophosphatemia (XLH) and Hyp mice, the murine homologue of the disease, develop severe osteoarthropathy and the precise factors that contribute to this joint degeneration remain largely unknown. Fibroblast growth factor 2 (FGF2) is a key regulatory growth factor in osteoarthritis. Although there are multiple FGF2 isoforms the potential involvement of specific FGF2 isoforms in joint degradation has not been investigated. Mice that overexpress the high molecular weight FGF2 isoforms in bone (HMWTg mice) phenocopy Hyp mice and XLH subjects and Hyp mice overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes. Since Hyp mice and XLH subjects develop osteoarthropathies we examined whether HMWTg mice also develop knee joint degeneration at 2, 8, and 18-month-old compared with VectorTg (control) mice. HMWTg mice developed spontaneous osteoarthropathy as early as 2 months of age with thinning of subchondral bone, osteophyte formation, decreased articular cartilage thickness, abnormal mineralization within the joint, increased cartilage degradative enzymes, hypertrophic markers, and angiogenesis. FGF receptors 1 and 3 and fibroblast growth factor 23 were significantly altered compared to VectorTg mice. In addition, gene expression of growth factors and cytokines including bone morphogenetic proteins, Insulin like growth factor 1, Interleukin 1 beta, as well transcription factors Sex determining region Y box 9, hypoxia inducible factor 1 and nuclear factor kappa B subunit 1 were differentially modulated in HMWTg compared with VectorTg. This study demonstrates that overexpression of the HMW isoforms of FGF2 in bone results in catabolic activity in joint cartilage and bone that leads to osteoarthropathy.
Development.
2018 Sep 18
Holmes G, O'Rourke C, Perrine SMM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW.
PMID: 30228104 | DOI: 10.1242/dev.166488
Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.
Endocrinology.
2018 Jun 01
Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, Bany BM, Ma L.
PMID: 29688404 | DOI: 10.1210/en.2018-00105
To prepare for embryo implantation, the uterus must undergo a series of reciprocal interactions between the uterine epithelium and the underlying stroma, which are orchestrated by ovarian hormones. During this process, multiple signaling pathways are activated to direct cell proliferation and differentiation, which render the uterus receptive to the implanting blastocysts. One important modulator of these signaling pathways is the cell surface and extracellular matrix macromolecules, heparan sulfate proteoglycans (HSPGs). HSPGs play crucial roles in signal transduction by regulating morphogen transport and ligand binding. In this study, we examine the role of HSPG sulfation in regulating uterine receptivity by conditionally deleting the N-deacetylase/N-sulfotransferase (NDST) 1 gene (Ndst1) in the mouse uterus using the Pgr-Cre driver, on an Ndst2- and Ndst3-null genetic background. Although development of the female reproductive tract and subsequent ovarian function appear normal in Ndst triple-knockout females, they are infertile due to implantation defects. Embryo attachment appears to occur but the uterine epithelium at the site of implantation persists rather than disintegrates in the mutant. Uterine epithelial cells continued to proliferate past day 4 of pregnancy, accompanied by elevated Fgf2 and Fgf9 expression, whereas uterine stroma failed to undergo decidualization, as evidenced by lack of Bmp2 induction. Despite normal Indian hedgehog expression, transcripts of Ptch1 and Gli1, both components as well as targets of the hedgehog (Hh) pathway, were detected only in the subepithelial stroma, indicating altered Hh signaling in the mutant uterus. Taken together, these data implicate an essential role for HSPGs in modulating signal transduction during mouse implantation.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com