ACD can configure probes for the various manual and automated assays for ESR1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nat Neurosci.
2017 Jan 30
McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA, Budygin EA, Rubinow DR, Stuber GD.
PMID: 28135243 | DOI: 10.1038/nn.4487
Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and coordinate social interactions. However, the neural circuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors, comprises molecularly diverse neurons with widespread projections. Here we identify a steroid-responsive subset of neurotensin (Nts)-expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially engaged reward circuit. Using in vivo two-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to nonsocial appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue-encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically relevant stimuli and co-opt midbrain reward circuits to promote prosocial behaviors critical for species survival.
Endocr Relat Cancer.
2018 Nov 01
Dubois C, Rocks N, Blacher S, Primac I, Gallez A, García-Caballero M, Gérard C, Brouchet L, Noel A, Lenfant F, Cataldo D, Péqueux C.
PMID: 30444717 | DOI: 10.1530/ERC-18-0328
Estrogen signalling pathways are emerging targets for lung cancer therapy. Unravelling the contribution of estrogens in lung cancer development is a pre-requisite to support the development of sex-based treatments and to identify patients who could potentially benefit from anti-estrogen treatments. In this study, we highlight the contribution of lymphatic and blood endothelia in the sex-dependent modulation of lung cancer. The orthotopic graft of syngeneic lung cancer cells into immunocompetent mice showed that lung tumours grew faster in female mice than in males. Moreover, estradiol (E2) promoted tumour development in female mice and increased lymph/angiogenesis and levels of VEGFA and bFGF in lung tumours of females through an estrogen receptor (ER) alpha-dependent pathway. Furthermore, while treatment with ERbeta antagonist was inefficient, ERalpha antagonist (MPP) and tamoxifen decreased lung tumour volumes, altered blood and lymphatic vasculature and reduced VEGFA and bFGF levels in females, but not in males. Finally, the quantification of lymphatic and blood vasculature of lung adenocarcinoma biopsies from patients aged between 35 to 55 years old revealed more extensive lymphangiogenesis and angiogenesis in tumour samples issued from women than from men. In conclusion, our findings highlight an E2/ERalpha-dependent modulation of lymphatic and blood vascular components of lung tumour microenvironment. Our study has potential clinical implication in a personalised medicine perspective by pointing to the importance of estrogen status or supplementation on lung cancer development that should be considered to adapt therapeutic strategies.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com