Pharmacology Biochemistry and Behavior
Lewis MH, Rajpal H, Muehlmann AM.
PMID: - | DOI: 10.1016/j.pbb.2019.04.006
Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fospositive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.
Frontiers in cellular neuroscience
Giua, G;Lassalle, O;Makrini-Maleville, L;Valjent, E;Chavis, P;Manzoni, OJJ;
PMID: 37323585 | DOI: 10.3389/fncel.2023.1146647
Fragile X syndrome (FXS), resulting from a mutation in the Fmr1 gene, is the most common monogenic cause of autism and inherited intellectual disability. Fmr1 encodes the Fragile X Messenger Ribonucleoprotein (FMRP), and its absence leads to cognitive, emotional, and social deficits compatible with the nucleus accumbens (NAc) dysfunction. This structure is pivotal in social behavior control, consisting mainly of spiny projection neurons (SPNs), distinguished by dopamine D1 or D2 receptor expression, connectivity, and associated behavioral functions. This study aims to examine how FMRP absence differentially affects SPN cellular properties, which is crucial for categorizing FXS cellular endophenotypes.We utilized a novel Fmr1-/y::Drd1a-tdTomato mouse model, which allows in-situ identification of SPN subtypes in FXS mice. Using RNA-sequencing, RNAScope and ex-vivo patch-clamp in adult male mice NAc, we comprehensively compared the intrinsic passive and active properties of SPN subtypes.Fmr1 transcripts and their gene product, FMRP, were found in both SPNs subtypes, indicating potential cell-specific functions for Fmr1. The study found that the distinguishing membrane properties and action potential kinetics typically separating D1- from D2-SPNs in wild-type mice were either reversed or abolished in Fmr1-/y::Drd1a-tdTomato mice. Interestingly, multivariate analysis highlighted the compound effects of Fmr1 ablation by disclosing how the phenotypic traits distinguishing each cell type in wild-type mice were altered in FXS.Our results suggest that the absence of FMRP disrupts the standard dichotomy characterizing NAc D1- and D2-SPNs, resulting in a homogenous phenotype. This shift in cellular properties could potentially underpin select aspects of the pathology observed in FXS. Therefore, understanding the nuanced effects of FMRP absence on SPN subtypes can offer valuable insights into the pathophysiology of FXS, opening avenues for potential therapeutic strategies.
bioRxiv : the preprint server for biology
Matsumura, K;Choi, IB;Asokan, M;Le, NN;Natividad, L;Dobbs, LK;
PMID: 36865224 | DOI: 10.1101/2023.02.23.529807
Drug predictive cues and contexts exert powerful control over behavior and can incite drug seeking and taking. This association and the behavioral output are encoded within striatal circuits, and regulation of these circuits by G-protein coupled receptors affects cocaine-related behaviors. Here, we investigated how opioid peptides and G-protein coupled opioid receptors expressed in striatal medium spiny neurons (MSNs) regulate conditioned cocaine seeking. Augmenting levels of the opioid peptide enkephalin in the striatum facilitates acquisition of cocaine conditioned place preference (CPP). In contrast, opioid receptor antagonists attenuate cocaine CPP and facilitate extinction of alcohol CPP. However, whether striatal enkephalin is necessary for acquisition of cocaine CPP and maintenance during extinction remains unknown. We generated mice with a targeted deletion of enkephalin from dopamine D2-receptor expressing MSNs (D2-PenkKO) and tested them for cocaine CPP. Low striatal enkephalin levels did not attenuate acquisition or expression of CPP; however, D2-PenkKOs showed faster extinction of cocaine CPP. Single administration of the non-selective opioid receptor antagonist naloxone prior to preference testing blocked expression of CPP selectively in females, but equally between genotypes. Repeated administration of naloxone during extinction did not facilitate extinction of cocaine CPP for either genotype, but rather prevented extinction in D2-PenkKO mice. We conclude that while striatal enkephalin is not necessary for acquisition of cocaine reward, it maintains the learned association between cocaine and its predictive cues during extinction learning. Further, sex and pre-existing low striatal enkephalin levels may be important considerations for use of naloxone in treating cocaine use disorder.
bioRxiv : the preprint server for biology
Truckenbrod, LM;Betzhold, SM;Wheeler, AR;Shallcross, J;Singhal, S;Harden, S;Schwendt, M;Frazier, CJ;Bizon, JL;Setlow, B;Orsini, CA;
PMID: 36711946 | DOI: 10.1101/2023.01.15.524142
Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit- and cell type-specific optogenetic approaches in rats during a decision-making task involving risk of punishment. In Experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in Experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision-making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased choice of the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.
Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008
Background Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder, trichotillomania. Numerous preclinical studies have utilized SAPAP3 deficient mice for understanding the neurobiology of repetitive grooming, suggesting excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). However, MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigate the MSN subtype-specific roles of the striatal signaling hub protein, spinophilin, in mediating repetitive motor dysfunction associated with mGluR5 function. Methods Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action was measured using our novel conditional spinophilin mouse model that had spinophilin knocked out from striatal dMSNs or/and iMSNs. Results Loss of spinophilin only in iMSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator (VU0360172) without impacting locomotion-relevant behavior. Biochemically, we determined the spinophilin-mGluR5 interaction correlates with grooming behavior and loss of spinophilin shifts mGluR5 interactions from lipid-raft associated proteins toward postsynaptic density (PSD) proteins implicated in psychiatric disorders. Conclusions These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype-specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Reiner, BC;Zhang, Y;Stein, LM;Perea, ED;Arauco-Shapiro, G;Ben Nathan, J;Ragnini, K;Hayes, MR;Ferraro, TN;Berrettini, WH;Schmidt, HD;Crist, RC;
PMID: 36075888 | DOI: 10.1038/s41398-022-02135-1
Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline. A second cohort of rats was allowed to self-administer intravenous morphine (1.0 mg/kg/infusion) for 10 consecutive days. Each morphine-experienced rat was paired with a yoked saline control rat. snRNAseq libraries were generated from NAc punches and used to identify cell type-specific gene expression changes associated with volitional morphine taking. We identified 1106 differentially expressed genes (DEGs) in the acute morphine group, compared to 2453 DEGs in the morphine self-administration group, across 27 distinct cell clusters. Importantly, we identified 1329 DEGs that were specific to morphine self-administration. DEGs were identified in novel clusters of astrocytes, oligodendrocytes, and D1R- and D2R-expressing medium spiny neurons in the NAc. Cell type-specific DEGs included Rgs9, Celf5, Oprm1, and Pde10a. Upregulation of Rgs9 and Celf5 in D2R-expressing neurons was validated by RNAscope. Approximately 85% of all oligodendrocyte DEGs, nearly all of which were associated with morphine taking, were identified in two subtypes. Bioinformatic analyses identified cell type-specific upstream regulatory mechanisms of the observed transcriptome alterations and downstream signaling pathways, including both novel and previously identified molecular pathways. These findings show that volitional morphine taking is associated with distinct cell type-specific transcriptomic changes in the rat NAc and highlight specific striatal cell populations and novel molecular substrates that could be targeted to reduce compulsive opioid taking.
Teague, C;Picone, J;Wright, W;Browne, C;Silva, G;Futamura, R;Minier-Toribio, A;Estill, M;Ramakrishnan, A;Martinez-Rivera, F;Godino, A;Parise, E;Schmidt, K;Pulido, N;Lorsch, Z;Kim, J;Shen, L;Neve, R;Dong, Y;Nestler, E;Hamilton, P;
| DOI: 10.1016/j.biopsych.2022.07.022
Background Over the course of chronic drug use, brain transcriptional neuroadaptation are thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within mouse NAc. Methods To query the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified CRISPR/dCas9 constructs, capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. Results We observe that CREB binding to the Zfp189 promoter increases Zfp189 expression and diminishes the reinforcing responses to cocaine. We show further that NAc Zfp189 expression is increased within D1 medium spiny neurons (MSNs) in response to acute cocaine, but increased in both D1 and D2 MSNs in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiates electrophysiological activity of D1 and D2 MSNs - recapitulating the known effect of CREB on these neurons. Lastly, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. Conclusions Together, these findings point to the CREB-Zfp189 interaction within NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.
Wright, KN;Johnson, NL;Dossat, AM;Wilson, JT;Wesson, DW;
PMID: 35101702 | DOI: 10.1016/j.yhbeh.2022.105122
Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice
Acta pharmacologica Sinica
Zhang, HY;De Biase, L;Chandra, R;Shen, H;Liu, QR;Gardner, E;Lobo, MK;Xi, ZX;
PMID: 34316031 | DOI: 10.1038/s41401-021-00712-6
Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Gene-targeted, CREB-mediated induction of ΔFosB controls distinct downstream transcriptional patterns within D1 and D2 medium spiny neurons
Lardner, C;van der Zee, Y;Estill, M;Kronman, H;Salery, M;Cunningham, A;Godino, A;Parise, E;Kim, J;Neve, R;Shen, L;Hamilton, P;Nestler, E;
| DOI: 10.1016/j.biopsych.2021.06.017
Background The onset and persistence of addiction phenotypes are, in part, mediated by transcriptional mechanisms in the brain that affect gene expression and subsequently neural circuitry. ΔFosB is a transcription factor that accumulates in the nucleus accumbens (NAc) – a brain region responsible for coordinating reward and motivation – after exposure to virtually every known rewarding substance, including cocaine and opioids. ΔFosB has also been shown to directly control gene transcription and behavior downstream of both cocaine and opioid exposure, but with potentially different roles in D1 and D2 medium spiny neurons (MSNs) in NAc. Methods To clarify MSN subtype-specific roles for ΔFosB, and investigate how these coordinate the actions of distinct classes of addictive drugs in NAc, we developed a CRISPR/Cas9-based epigenome editing tool to induce endogenous ΔFosB expression in vivo in the absence of drug exposure. After inducing ΔFosB in D1 or D2 MSNs, or both, we performed RNA-sequencing on bulk male and female NAc tissue (N = 6-8/group). Results We find that ΔFosB induction elicits distinct transcriptional profiles in NAc by MSN subtype and by sex, establishing for the first time that ΔFosB mediates different transcriptional effects in males vs females. We also demonstrate that changes in D1 MSNs, but not in D2 MSNs or both, significantly recapitulate changes in gene expression induced by cocaine self-administration. Conclusions Together, these findings demonstrate the efficacy of a novel molecular tool for studying cell-type-specific transcriptional mechanisms, and shed new light on the activity of ΔFosB, a critical transcriptional regulator of drug addiction.
Ziminski J, Hessler S, Margetts-Smith G, Sieburg MC, Crombag HS, Koya E.
PMID: 28213443 | DOI: 10.1523/JNEUROSCI.3766-16.2017
Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, animals may adapt accordingly by inhibiting food seeking responses. Sparsely activated sets of neurons, coined neuronal ensembles, have been shown to encode the strength of reward-cue associations. While alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice following appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. Following extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENTSparsely distributed sets of neurons called 'neuronal ensembles' encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that occur specifically on neuronal ensembles that encode appetitive associations. Here we reveal that sucrose cue exposure recruited a more excitable ensemble in the nucleus accumbens, but not orbitofrontal cortex compared to their surrounding neurons. This excitability difference was not observed when the cue's salience was diminished following extinction learning. These novel data provide evidence that the intrinsic excitability of appetitive memory-encoding ensembles is differentially regulated across brain areas and dynamically adapts to changes in associative strength.