Journal of chemical neuroanatomy
Viden, A;Ch'ng, SS;Walker, LC;Shesham, A;Hamilton, SM;Smith, CM;Lawrence, AJ;
PMID: 36182026 | DOI: 10.1016/j.jchemneu.2022.102167
The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells. Here, we used a recently developed transgenic Penk-Cre mouse line to advance our understanding of the efferent and afferent connectivity of ppENK in the CeA. First, to determine the fidelity of Cre expression in Penk-Cre transgenic mice, we conducted RNAscope in the CeA of Penk-Cre mice. Our analysis revealed that 96.6% of CeA Cre+ neurons co-expressed pENK mRNA, and 99.7% of CeA pENK+ neurons co-expressed Cre mRNA, indicating faithful recapitulation of Cre expression in CeA ppENK-expressing cells, supporting the fidelity of the Penk-Cre reporter mouse. Anterograde tracing of CeAPenk cells showed strong efferent projections to the extended amygdala, midbrain and hindbrain PBN and NTS. Retrograde tracing of Penk afferents to the CeA were more restricted, with primary innervation originating within the amygdala complex and bed nucleus of the stria terminalis, and minor innervation from the parabrachial nucleus and nucleus of the solitary tract. Together, our data provide a comprehensive map of ENKergic efferent and afferent connectivity of the CeA in Penk-Cre mice. Further, we highlight both the utility and limitations of the Penk-Cre mice to study the function of CeA, PBN and NTS ppENK cells.
Shin, S;You, IJ;Jeong, M;Bae, Y;Wang, XY;Cawley, ML;Han, A;Lim, BK;
PMID: 36510113 | DOI: 10.1038/s41593-022-01208-0
Early-life trauma (ELT) is a risk factor for binge eating and obesity later in life, yet the neural circuits that underlie this association have not been addressed. Here, we show in mice that downregulation of the leptin receptor (Lepr) in the lateral hypothalamus (LH) and its effect on neural activity is crucial in causing ELT-induced binge-like eating and obesity upon high-fat diet exposure. We also found that the increased activity of Lepr-expressing LH (LHLepr) neurons encodes sustained binge-like eating in ELT mice. Inhibition of LHLepr neurons projecting to the ventrolateral periaqueductal gray normalizes these behavioral features of ELT mice. Furthermore, activation of proenkephalin-expressing ventrolateral periaqueductal gray neurons, which receive inhibitory inputs from LHLepr neurons, rescues ELT-induced maladaptive eating habits. Our results identify a circuit pathway that mediates ELT-induced maladaptive eating and may lead to the identification of novel therapeutic targets for binge eating and obesity.
Furlan, A;Corona, A;Boyle, S;Sharma, R;Rubino, R;Habel, J;Gablenz, EC;Giovanniello, J;Beyaz, S;Janowitz, T;Shea, SD;Li, B;
PMID: 36266470 | DOI: 10.1038/s41593-022-01178-3
Obesity is a global pandemic that is causally linked to many life-threatening diseases. Apart from some rare genetic conditions, the biological drivers of overeating and reduced activity are unclear. Here, we show that neurotensin-expressing neurons in the mouse interstitial nucleus of the posterior limb of the anterior commissure (IPAC), a nucleus of the central extended amygdala, encode dietary preference for unhealthy energy-dense foods. Optogenetic activation of IPACNts neurons promotes obesogenic behaviors, such as hedonic eating, and modulates food preference. Conversely, acute inhibition of IPACNts neurons reduces feeding and decreases hedonic eating. Chronic inactivation of IPACNts neurons recapitulates these effects, reduces preference for sweet, non-caloric tastants and, furthermore, enhances locomotion and energy expenditure; as a result, mice display long-term weight loss and improved metabolic health and are protected from obesity. Thus, the activity of a single neuronal population bidirectionally regulates energy homeostasis. Our findings could lead to new therapeutic strategies to prevent and treat obesity.
Proliferating primary pituitary cells as a model for studying regulation of gonadotrope chromatin and gene expression
Molecular and cellular endocrinology
Pnueli, L;Shalev, D;Refael, T;David, C;Boehm, U;Melamed, P;
PMID: 34090968 | DOI: 10.1016/j.mce.2021.111349
The chromatin organization of the gonadotropin gene promoters in the pituitary gonadotropes plays a major role in determining how these gene are activated, but is difficult to study because of the low numbers of these cells in the pituitary gland. Here, we set out to create a cell model to study gonadotropin chromatin, and found that by optimizing cell culture conditions, we can maintain stable proliferating cultures of primary non-transformed gonadotrope cells over weeks to months. Although expression of the gonadotropin genes drops very low, these cells are enriched in gonadotrope markers and respond to GnRH. Furthermore, >85% of the cells contained Lhb and/or Fshb mature transcripts; though these were virtually restricted to the nuclei. The gonadotropes were harvested initially due to expression of dTOMATO, following activation of Cre recombinase by the Gnrhr promoter. Over 6 mo in culture, a similar proportion of the recombined DNA was maintained (i.e. cells derived from the original gonadotropes or having acquired Gnrhr-promoter activity), together with cells of a distinct origin. The cells are enriched with markers of proliferating pituitary and stem cells, including Sox2, suggesting that multipotent precursor cells might have proliferated and differentiated into gonadotrope-like cells. These cell cultures offer a new and versatile methodology for research in gonadotrope differentiation and function, and can provide enough primary cells for chromatin immunoprecipitation and epigenetic analysis, while our initial studies also indicate a possible regulatory mechanism that might be involved in the nuclear export of gonadotropin gene mRNAs.