ACD can configure probes for the various manual and automated assays for CD8 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Your search for "Cd8" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1
bioRxiv : the preprint server for biology
2023 Feb 18
Mahadevan, KK;McAndrews, KM;LeBleu, VS;Yang, S;Lyu, H;Li, B;Sockwell, AM;Kirtley, ML;Morse, SJ;Moreno Diaz, BA;Kim, MP;Feng, N;Lopez, AM;Guerrero, PA;Sugimoto, H;Arian, KA;Ying, H;Barekatain, Y;Kelly, PJ;Maitra, A;Heffernan, TP;Kalluri, R;
PMID: 36824971 | DOI: 10.1101/2023.02.15.528757
Science translational medicine
2022 Mar 23
Selvanesan, BC;Chandra, D;Quispe-Tintaya, W;Jahangir, A;Patel, A;Meena, K;Alves Da Silva, RA;Friedman, M;Gabor, L;Khouri, O;Libutti, SK;Yuan, Z;Li, J;Siddiqui, S;Beck, A;Tesfa, L;Koba, W;Chuy, J;McAuliffe, JC;Jafari, R;Entenberg, D;Wang, Y;Condeelis, J;DesMarais, V;Balachandran, V;Zhang, X;Lin, K;Gravekamp, C;
PMID: 35320003 | DOI: 10.1126/scitranslmed.abc1600
International Journal of Molecular Sciences
2023 Jan 30
Kaur, S;Awad, D;Finney, R;Meyer, T;Singh, S;Cam, M;Karim, B;Warner, A;Roberts, D;
| DOI: 10.3390/ijms24032612
Nat. Commun.
2018 Mar 28
Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC, Linehan DC, Challen GA, Faccio R, Aft RL, DeNardo DG.
PMID: 29593283 | DOI: 10.1038/s41467-018-03600-6
Tumors employ multiple mechanisms to evade immune surveillance. One mechanism is tumor-induced myelopoiesis, whereby the expansion of immunosuppressive myeloid cells can impair tumor immunity. As myeloid cells and conventional dendritic cells (cDCs) are derived from the same progenitors, we postulated that myelopoiesis might impact cDC development. The cDC subset, cDC1, which includes human CD141+DCs and mouse CD103+ DCs, supports anti-tumor immunity by stimulating CD8+ T-cell responses. Here, to understand how cDC1 development changes during tumor progression, we investigated cDC bone marrow progenitors. We found localized breast and pancreatic cancers induce systemic decreases in cDC1s and their progenitors. Mechanistically, tumor-produced granulocyte-stimulating factor downregulates interferon regulatory factor-8 in cDC progenitors, and thus results in reduced cDC1 development. Tumor-induced reductions in cDC1 development impair anti-tumor CD8+ T-cell responses and correlate with poor patient outcomes. These data suggest immune surveillance can be impaired by tumor-induced alterations in cDC development.
Clinical cancer research : an official journal of the American Association for Cancer Research
2023 Jun 16
Pich-Bavastro, C;Yerly, L;Di Domizio, J;Tissot-Renaud, S;Gilliet, M;Kuonen, F;
PMID: 37327314 | DOI: 10.1158/1078-0432.CCR-23-0219
Cancer cell
2022 Nov 21
Hua, Y;Vella, G;Rambow, F;Allen, E;Antoranz Martinez, A;Duhamel, M;Takeda, A;Jalkanen, S;Junius, S;Smeets, A;Nittner, D;Dimmeler, S;Hehlgans, T;Liston, A;Bosisio, FM;Floris, G;Laoui, D;Hollmén, M;Lambrechts, D;Merchiers, P;Marine, JC;Schlenner, S;Bergers, G;
PMID: 36423635 | DOI: 10.1016/j.ccell.2022.11.002
Cancer Res.
2017 May 17
Loveridge C, Mui E, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom OJ, Leung HY.
PMID: 28515147 | DOI: 10.1158/0008-5472.CAN-16-2565
Prostate cancer (PCa) does not appear to respond to immune checkpoint therapies where T cell infiltration may be a key limiting factor. Here we report evidence that ablating the growth regulatory kinase Erk5 can increase T cell infiltration in an established Pten-deficient mouse model of human PCa. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared to control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease.
Clinical and experimental medicine
2021 May 06
Guidolin, D;Tamma, R;Annese, T;Tortorella, C;Ingravallo, G;Gaudio, F;Perrone, T;Musto, P;Specchia, G;Ribatti, D;
PMID: 33959827 | DOI: 10.1007/s10238-021-00716-w
Oncotarget
2017 Feb 17
Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S, Ahn SH, Park DJ, Kim HH, Kim WH, Lee HS.
PMID: - | DOI: 10.18632/oncotarget.15465
We co-assessed PD-L1 expression and CD8+ tumor-infiltrating lymphocytes in gastric cancer (GC), and categorized into 4 microenvironment immune types. Immunohistochemistry (PD-L1, CD8, Foxp3, E-cadherin, and p53), PD-L1 mRNA in situ hybridization (ISH), microsatellite instability (MSI), and EBV ISH were performed in 392 stage II/III GCs treated with curative surgery and fluoropyrimidine-based adjuvant chemotherapy, and two public genome databases were analyzed for validation. PD-L1+ was found in 98/392 GCs (25.0%). The proportions of immune types are as follows: PD-L1+/CD8High, 22.7%; PD-L1−/CD8Low, 22.7%; PD-L1+/CD8Low, 2.3%; PD-L1−/CD8High, 52.3%. PD-L1+/CD8High type accounted for majority of EBV+ and MSI-high (MSI-H) GCs (92.0% and 66.7%, respectively), and genome analysis from public datasets demonstrated similar pattern. PD-L1−/CD8High showed the best overall survival (OS) and PD-L1−/CD8Low the worst (P < 0.001). PD-L1 expression alone was not associated with OS, however, PD-L1−/CD8High type compared to PD-L1+/CD8High was independent favorable prognostic factor of OS by multivariate analysis (P = 0.042). Adaptation of recent molecular classification based on EBV, MSI, E-cadherin, and p53 showed no significant survival differences. These findings support the close relationship between PD-L1/CD8 status based immune types and EBV+, MSI-H GCs, and their prognostic significance in stage II/III GCs.
OncoImmunology
2017 Jun 19
Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.
Cell.
2017 Nov 30
Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, Littlewood TD, Evan GI.
PMID: 29195074 | DOI: 10.1016/j.cell.2017.11.013
The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.
Nat Med.
2018 Feb 12
Xiao Q, Wu J, Wang WJ, Chen S, Zheng Y, Yu X, Meeth K, Sahraei M, Bothwell ALM, Chen L, Bosenberg M, Chen J, Sexl V, Sun L, Li L, Tang W, Wu D.
PMID: 29431745 | DOI: 10.1038/nm.4496
Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt-β-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8+ T cells in tumors, impedes tumor progression, and enhances the effects of PD-1 blockade. Thus, we have identified a previously unknown tumor immune-suppressive mechanism and immunotherapeutic targets particularly relevant for CRCs and a subset of melanomas.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com