Brain : a journal of neurology
Ryu, S;Liu, X;Guo, T;Guo, Z;Zhang, J;Cao, YQ;
PMID: 37284790 | DOI: 10.1093/brain/awad191
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signaling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signaling pathway contributes to chronic migraine is not clear. Here, we modeled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviors induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signaling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviors, indicating that both CCL2-CCR2 signaling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviors than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signaling in macrophages and T cells. This consequently enhances both CGRP and PACAP signaling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signaling is more effective than targeting either pathway alone.
Activation of notch signaling in dorsal root ganglia innervating knee joints in experimental osteoarthritis
Osteoarthritis and Cartilage
Wang, L;Miller, R;Malfait, A;
| DOI: 10.1016/j.joca.2021.02.480
Purpose: Surgical destabilization of the medial meniscus (DMM) is a widely used mouse model of knee osteoarthritis (OA). The cell bodies of primary sensory neurons innervating the knee joints are located in the lumbar dorsal root ganglia (L3-L5 DRG). Analysis of the gene expression profile of L3-L5 DRG after DMM or sham surgery revealed that innate neuro-immune pathways were strongly regulated, especially in the later stages of the model, 8-16 weeks after DMM, when persistent pain is associated with severe joint damage. In depth analysis of the microarray data further showed that a number of genes encoding molecules in the Notch signaling pathway were regulated, mostly in late-stage disease, along with the upregulation of the gene encoding monocyte chemoattractant protein (MCP)-1/C-C motif chemokine ligand 2 (CCL2). CCL2 is a proalgesic mediator that is released upon tolllike receptor (TLR) 2/4 activation, and plays a key role in initiating and maintaining pain in this model. The aim of this study was to investigate Notch signaling in the knee-innervating DRG of mice with experimental knee OA, and determine the effect of Notch signaling activation on TLR2/4-mediated CCL2 synthesis in cultured DRG cells. Methods: DMM or sham surgery was performed in the right knee of 10- week old male C57BL/6 mice. Ipsilateral L4 DRG from mice 26 weeks after DMM or sham surgery were collected and cryosectioned. Expression of the Notch downstream target gene, Hes1, was detected using RNA in situ hybridization (ISH) (RNAscope, Advanced Cell Diagnostics). Quantification of mRNA expression was performed as calculating H-score of each sample according to the 0-4 five-bin scoring system recommended by the manufacturer, based on the number of cells with the same range of number of dots per cell. Active Notch protein was detected via immunofluorescence (IF) staining using an antibody against Notch intracellular domain (NICD), which is only present after g-secretase cleavage of Notch at S3. For in vitro cultures of DRG cells, bilateral L3-L5 DRG were collected from 10-week old male naïve C57BL/6 mice. Following enzymatic digestion, DRG cells were plated on poly-L-lysine and laminin coated glass coverslips, and cultured in F12 medium supplemented with 1x N2 and 0.5% fetal bovine serum. Inhibition of Notch signaling was achieved by (1) g-secretase inhibitor, DAPT; (2) ADAM-17 inhibitor, TAPI-1; or (3) soluble form of the Jag1 peptide (sJag1). On day 4, cells were pre-treated with DAPT (25 mM), TAPI-1 (20 mM), or sJag1 (40 mM) for 1 hour, followed by addition of the TLR2 agonist, Pam3CSK4 (1 mg/ml), or the TLR4 agonist, LPS (1 mg/ ml). Then, RNA was collected 3 hours later for qRT-PCR to quantify Ccl2 mRNA expression, or culture supernatants were collected 24 hours later to measure the CCL2 protein level using Quantikine Mouse CCL2/JE/ MCP-1 Immunoassay kit from R&D Systems, Inc.
Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316
Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Su, Y;Zhou, Y;Bennett, ML;Li, S;Carceles-Cordon, M;Lu, L;Huh, S;Jimenez-Cyrus, D;Kennedy, BC;Kessler, SK;Viaene, AN;Helbig, I;Gu, X;Kleinman, JE;Hyde, TM;Weinberger, DR;Nauen, DW;Song, H;Ming, GL;
PMID: 36332572 | DOI: 10.1016/j.stem.2022.09.010
The molecular diversity of glia in the human hippocampus and their temporal dynamics over the lifespan remain largely unknown. Here, we performed single-nucleus RNA sequencing to generate a transcriptome atlas of the human hippocampus across the postnatal lifespan. Detailed analyses of astrocytes, oligodendrocyte lineages, and microglia identified subpopulations with distinct molecular signatures and revealed their association with specific physiological functions, age-dependent changes in abundance, and disease relevance. We further characterized spatiotemporal heterogeneity of GFAP-enriched astrocyte subpopulations in the hippocampal formation using immunohistology. Leveraging glial subpopulation classifications as a reference map, we revealed the diversity of glia differentiated from human pluripotent stem cells and identified dysregulated genes and pathological processes in specific glial subpopulations in Alzheimer's disease (AD). Together, our study significantly extends our understanding of human glial diversity, population dynamics across the postnatal lifespan, and dysregulation in AD and provides a reference atlas for stem-cell-based glial differentiation.
Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury
Proceedings of the National Academy of Sciences of the United States of America
Gerhardt, LMS;Liu, J;Koppitch, K;Cippà, PE;McMahon, AP;
PMID: 34183416 | DOI: 10.1073/pnas.2026684118
Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia-reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d ("early") and 28-d ("late") time points post-IRI identified specific gene and pathway activity in the injury-repair transition. In particular, we identified Vcam1 +/Ccl2 + PTCs at a late injury stage distinguished by marked activation of NF-κB-, TNF-, and AP-1-signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1 +/Ccl2 + PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1 +/Ccl2 + PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.