Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for CXCL9

ACD can configure probes for the various manual and automated assays for CXCL9 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for CXCL9 (262)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (18)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • CXCL9 (11) Apply CXCL9 filter
  • CXCL10 (9) Apply CXCL10 filter
  • IFN-γ (3) Apply IFN-γ filter
  • TBD (3) Apply TBD filter
  • Ccl2 (2) Apply Ccl2 filter
  • Ifng (2) Apply Ifng filter
  • IL-10 (2) Apply IL-10 filter
  • MCP-1 (1) Apply MCP-1 filter
  • Cd8a (1) Apply Cd8a filter
  • CD4 (1) Apply CD4 filter
  • CXCL13 (1) Apply CXCL13 filter
  • Tnf (1) Apply Tnf filter
  • GFAP (1) Apply GFAP filter
  • IL5 (1) Apply IL5 filter
  • KRT6A (1) Apply KRT6A filter
  • H19 (1) Apply H19 filter
  • TRD (1) Apply TRD filter
  • CXCL12 (1) Apply CXCL12 filter
  • Ccl19 (1) Apply Ccl19 filter
  • Cd69 (1) Apply Cd69 filter
  • TNF-α (1) Apply TNF-α filter
  • TGF-β (1) Apply TGF-β filter
  • IL-17A (1) Apply IL-17A filter
  • IL-16 (1) Apply IL-16 filter
  • CD45 (1) Apply CD45 filter
  • Krt10 (1) Apply Krt10 filter
  • CCL8 (1) Apply CCL8 filter
  • Il-1b (1) Apply Il-1b filter
  • CXCL8 (1) Apply CXCL8 filter
  • IFN-g (1) Apply IFN-g filter
  • TGF-b (1) Apply TGF-b filter
  • TNF-a (1) Apply TNF-a filter
  • PV1-E4 (1) Apply PV1-E4 filter
  • Human: Cxcl10 (1) Apply Human: Cxcl10 filter
  • Mouse: Cxcl9 (1) Apply Mouse: Cxcl9 filter

Product

  • RNAscope Multiplex Fluorescent Assay (4) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Cancer (4) Apply Cancer filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • Inflammation (2) Apply Inflammation filter
  • Aging (1) Apply Aging filter
  • Cell Senescence (1) Apply Cell Senescence filter
  • Development (1) Apply Development filter
  • Immuno (1) Apply Immuno filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Hepatitis (1) Apply Infectious Disease: Hepatitis filter
  • Inflammtion (1) Apply Inflammtion filter
  • Injury (1) Apply Injury filter
  • Kidney (1) Apply Kidney filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other (1) Apply Other filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Cell senescence (1) Apply Other: Cell senescence filter
  • Other: lymphadenopathy (1) Apply Other: lymphadenopathy filter
  • Other: Skin (1) Apply Other: Skin filter
  • Pulmonary Hypertension (1) Apply Pulmonary Hypertension filter
  • Pulmonology (1) Apply Pulmonology filter
  • T Cells (1) Apply T Cells filter

Category

  • Publications (18) Apply Publications filter
Y-Chromosome Gene, Uty, Protects Against Pulmonary Hypertension by Reducing Proinflammatory Chemokines

American journal of respiratory and critical care medicine

2022 May 03

Cunningham, CM;Li, M;Ruffenach, G;Doshi, M;Aryan, L;Hong, J;Park, J;Hrncir, H;Medzikovic, L;Umar, S;Arnold, AP;Eghbali, M;
PMID: 35504005 | DOI: 10.1164/rccm.202110-2309OC

Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure and death. PAH exhibits a striking sex bias and is up to 4x more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies.We previously discovered the Y-Chromosome is protective against hypoxia-induced experimental PH which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-Chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods, Measurements and Main Results: To test the effect of Y-Chromosome genes on PH development, we knocked down each Y-Chromosome gene expressed in the lung via intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia. Knockdown of Y-Chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA-sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in PAH females. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of CXCL9 and CXCL10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity.Uty, is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines CXCL9 and CXCL10 which trigger endothelial cell death and PH. Inhibition of Cxcl9 and Cxcl10 rescues PH development in multiple experimental models.
Analysis of Cytokine Gene Expression using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of Cattle Infected Experimentally by Aerosolized Mycobacterium bovis.

J Comp Pathol. 2015 Jul 16.

Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.

Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
The Functional Immunophenotypic Profile of Kikuchi Fujimoto Disease: Comparison with Systemic Lupus Erythematosus

SSRN Electronic Journal

2022 May 28

Galera, P;Alejo, J;Valadez, R;Davies-Hill, T;Menon, M;Hasni, S;Jaffe, E;Pittaluga, S;
| DOI: 10.2139/ssrn.4115599

Kikuchi Fujimoto Disease (KFD) is a rare form of localized lymphadenopathy, commonly affecting young Asian females with a self-limited course. The immunopathogenic mechanisms underlying KFD are still not well understood. KFD and systemic lupus erythematosus (SLE) share several histologic and clinical features, thus posing a diagnostic challenge. The aim of this study was to elucidate the in-situ distribution of immune cells and the cytokine/chemokine milieu of KFD utilizing immunohistochemistry to identify key cellular elements and RNAscope to assess cytokine and chemokine production. This study further compared the clinical, morphologic, and immunologic features of KFD to SLE.18 KFD, 16 SLE and 3 reactive lymph nodes were included. In contrast to KFD and reactive lymph nodes, SLE patients frequently exhibited generalized lymphadenopathy and had significantly higher frequency of systemic manifestations. Both KFD and SLE lymph nodes revealed overlapping morphologic findings with few distinguishing features namely the presence of capsular fibrosis and plasmacytosis in SLE and predominance of CD8-positive T cells in KFD.RNAscope studies in the KFD cohort revealed significantly higher amounts of interferon γ (IFN-γ), CXCL9 and CXCL10 in comparison to the SLE and reactive lymph nodes. These findings suggest a T-helper cell 1 (Th1) response, driven by IFN-γ and IFN-γ induced CXCL9 and CXCL10, is pivotal in the pathogenesis of KFD  and is less evident in lymph nodes from SLE patients. Distinguishing histological features between KFD and SLE are subtle. Studying the cytokine/chemokine environment provides valuable insight into the pathophysiology of KFD. In addition, assessing the production of these cytokines/chemokines may provide further diagnostic help in differentiating KFD from SLE.
CD8+ T cells modulate autosomal dominant polycystic kidney disease progression

Kidney Int.

2018 Sep 21

Kleczko EK, Marsh KH, Tyler LC, Furgeson SB, Bullock BL, Altmann CJ, Miyazaki M, Gitomer BY, Harris PC, Weiser-Evans MCM, Chonchol MB, Clambey ET, Nemenoff RA, Hopp K.
PMID: 30249452 | DOI: 10.1016/j.kint.2018.06.025

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited nephropathy. To date, therapies alleviating the disease have largely focused on targeting abnormalities in renal epithelial cell signaling. ADPKD has many hallmarks of cancer, where targeting T cells has brought novel therapeutic interventions. However, little is known about the role and therapeutic potential of T cells in ADPKD. Here, we used an orthologous ADPKD model, Pkd1 p.R3277C (RC), to begin to define the role of T cells in disease progression. Using flow cytometry, we found progressive increases in renal CD8+ and CD4+ T cells, correlative with disease severity, but with selective activation of CD8+ T cells. By immunofluorescence, T cells specifically localized to cystic lesions and increased levels of T-cell recruiting chemokines (CXCL9/CXCL10) were detected by qPCR/in situ hybridization in the kidneys of mice, patients, and ADPKD epithelial cell lines. Importantly, immunodepletion of CD8+ T cells from one to three months in C57Bl/6 Pkd1RC/RC mice resulted in worsening of ADPKD pathology, decreased apoptosis, and increased proliferation compared to IgG-control, consistent with a reno-protective role of CD8+ T cells. Thus, our studies suggest a functional role for T cells, specifically CD8+ T cells, in ADPKD progression. Hence, targeting this pathway using immune-oncology agents may represent a novel therapeutic approach for ADPKD.

Glucocorticoids target the CXCL9/10-CXCR3 axis and confer protection against immune-mediated kidney injury

JCI insight

2022 Nov 10

Riedel, JH;Robben, L;Paust, HJ;Zhao, Y;Asada, N;Song, N;Peters, A;Kaffke, A;Borchers, AC;Tiegs, G;Seifert, L;Tomas, NM;Hoxha, E;Wenzel, UO;Huber, TB;Wiech, T;Turner, JE;Krebs, CF;Panzer, U;
PMID: 36355429 | DOI: 10.1172/jci.insight.160251

Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases, for example, in different forms of crescentic glomerulonephritis because of their rapid anti-inflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated.Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+ CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T-cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10, as well as in the prevention of CXCR3+ CD4+ T-cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.
Close Association Between Altered Urine-urothelium Barrier and Tertiary Lymphoid Structure Formation in the Renal Pelvis During Nephritis

Journal of the American Society of Nephrology : JASN

2021 Oct 22

Ichii, O;Hosotani, M;Masum, MA;Horino, T;Nakamura, T;Namba, T;Otani, Y;Elewa, Y;Kon, Y;
PMID: 34686544 | DOI: 10.1681/ASN.2021040575

Background: Kidneys with chronic inflammation develop tertiary lymphoid structures (TLSs). Infectious pyelonephritis is characterized by renal pelvis (RP) inflammation. However, the pathological features of TLSs, including their formation and association with non-infectious nephritis, are unclear. Methods: RPs from humans and mice that were healthy or had non-infectious chronic nephritis, were analyzed for TLS development, and the mechanism of TLS formation investigated using urothelium or lymphoid structure cultures. Results: Regardless of infection, TLSs in the RP, termed urinary tract-associated lymphoid structures (UTALSs), formed in humans and mice with chronic nephritis. Moreover, urine played a unique role in UTALS formation. Specifically, we identified urinary IFN-γ as a candidate factor affecting urothelial barrier integrity because it alters occludin expression. In a nephritis mouse model, urine leaked from the lumen of the RP into the parenchyma. In addition, urine immunologically stimulated UTALS-forming cells via cytokine (IFN-γ, TNF-α) and chemokine (CXCL9, CXCL13) production. CXCL9 and CXCL13 were expressed in UTALS stromal cells and urine stimulation specifically induced CXCL13 in cultured fibroblasts. Characteristically, type XVII collagen (BP180), a candidate autoantigen of bullous pemphigoid, was ectopically localized in the urothelium covering UTALSs and associated with UTALS development by stimulating CXCL9 or IL-22 induction via the TNF-α/FOS/JUN pathway. Notably, UTALS development indices were positively correlated with chronic nephritis development. Conclusion: TLS formation in the RP is possible and altered urine-urothelium barrier-basedUTALS formation may represent a novel mechanism underlying the pathogenesis of chronic nephritis, regardless of urinary tract infection.
Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti-PD-1 response in NSCLC.

Life Sci Alliance.

2019 May 27

Bullock BL, Kimball AK, Poczobutt JM, Neuwelt AJ, Li HY, Johnson AM, Kwak JW, Kleczko EK, Kaspar RE, Wagner EK, Hopp K, Schenk EL, Weiser-Evans MC, Clambey ET, Nemenoff RA.
PMID: 31133614 | DOI: 10.26508/lsa.201900328

Targeting PD-1/PD-L1 is only effective in ∼20% of lung cancer patients, but determinants of this response are poorly defined. We previously observed differential responses of two murine K-Ras-mutant lung cancer cell lines to anti-PD-1 therapy: CMT167 tumors were eliminated, whereas Lewis Lung Carcinoma (LLC) tumors were resistant. The goal of this study was to define mechanism(s) mediating this difference. RNA sequencing analysis of cancer cells recovered from lung tumors revealed that CMT167 cells induced an IFNγ signature that was blunted in LLC cells. Silencing Ifngr1 in CMT167 resulted in tumors resistant to IFNγ and anti-PD-1 therapy. Conversely, LLC cells had high basal expression of SOCS1, an inhibitor of IFNγ. Silencing Socs1 increased response to IFNγ in vitro and sensitized tumors to anti-PD-1. This was associated with a reshaped tumor microenvironment, characterized by enhanced T cell infiltration and enrichment of PD-L1hi myeloid cells. These studies demonstrate that targeted enhancement of tumor-intrinsic IFNγ signaling can induce a cascade of changes associated with increased therapeutic vulnerability

Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma

Cancer cell

2023 Apr 08

Gaglia, G;Burger, ML;Ritch, CC;Rammos, D;Dai, Y;Crossland, GE;Tavana, SZ;Warchol, S;Jaeger, AM;Naranjo, S;Coy, S;Nirmal, AJ;Krueger, R;Lin, JR;Pfister, H;Sorger, PK;Jacks, T;Santagata, S;
PMID: 37059105 | DOI: 10.1016/j.ccell.2023.03.015

Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed imaging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes ("lymphonets") emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets retained progenitor and gained cytotoxic CD8+ T cell populations, likely via progenitor differentiation. These data show that lymphonets create a spatial environment supportive of CD8+ T cell anti-tumor responses.
Checkpoint Blockade-Induced Dermatitis and Colitis Are Dominated by Tissue-Resident Memory T Cells and Th1/Tc1 Cytokines

Cancer immunology research

2022 Oct 04

Reschke, R;Shapiro, JW;Yu, J;Rouhani, SJ;Olson, DJ;Zha, Y;Gajewski, TF;
PMID: 35977003 | DOI: 10.1158/2326-6066.CIR-22-0362

Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment

PLoS Pathog.

2020 Jan 22

Wang W, Uberoi A, Spurgeon M, Gronski E, Majerciak V, Lobanov A, Hayes M, Loke A, Zheng ZM, Lambert PF
PMID: 31968015 | DOI: 10.1371/journal.ppat.1008206

High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFN?-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infection
Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen

Cell

2023 Mar 30

Hasegawa, T;Oka, T;Son, HG;Oliver-García, VS;Azin, M;Eisenhaure, TM;Lieb, DJ;Hacohen, N;Demehri, S;
PMID: 37001502 | DOI: 10.1016/j.cell.2023.02.033

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.
Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease

JCI insight

2022 Jun 02

Shiu, J;Zhang, L;Lentsch, G;Flesher, JL;Jin, S;Polleys, CM;Jo, SJ;Mizzoni, C;Mobasher, P;Kwan, J;Rius-Diaz, F;Tromberg, BJ;Georgakoudi, I;Nie, Q;Balu, M;Ganesan, AK;
PMID: 35653192 | DOI: 10.1172/jci.insight.154585

Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells but why white patches in stable disease persist is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine non-invasive multiphoton microscopy (MPM) imaging and single-cell RNA sequencing (scRNA-seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, as compared to non-lesional skin, these keratinocytes are enriched in lesional vitiligo skin and shift their energy utilization towards oxidative phosphorylation. Systematic investigation of cell-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in non-responders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?