ACD can configure probes for the various manual and automated assays for CXCL2 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Immunity.
2018 Nov 13
Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, del Fresno C, Lynam E, Hub E, Thelen M, Graham G, Alon R, Sancho D, von Andrian UH, Voisin MB, Rot A, Nourshargh S.
PMID: 30446388 | DOI: 10.1016/j.immuni.2018.09.018
Neutrophils require directional cues to navigate through the complex structure of venular walls and into inflamed tissues. Here we applied confocal intravital microscopy to analyze neutrophil emigration in cytokine-stimulated mouse cremaster muscles. We identified differential and non-redundant roles for the chemokines CXCL1 and CXCL2, governed by their distinct cellular sources. CXCL1 was produced mainly by TNF-stimulated endothelial cells (ECs) and pericytes and supported luminal and sub-EC neutrophil crawling. Conversely, neutrophils were the main producers of CXCL2, and this chemokine was critical for correct breaching of endothelial junctions. This pro-migratory activity of CXCL2 depended on the atypical chemokine receptor 1 (ACKR1), which is enriched within endothelial junctions. Transmigrating neutrophils promoted a self-guided migration response through EC junctions, creating a junctional chemokine "depot" in the form of ACKR1-presented CXCL2 that enabled efficient unidirectional luminal-to-abluminal migration. Thus, CXCL1 and CXCL2 act in a sequential manner to guide neutrophils through venular walls as governed by their distinct cellular sources.
The Journal of clinical investigation
2022 Jul 15
Querrey, M;Chiu, S;Lecuona, E;Wu, Q;Sun, H;Anderson, M;Kelly, M;Ravi, S;Misharin, AV;Kreisel, D;Bharat, A;Budinger, GRS;
PMID: 35838047 | DOI: 10.1172/JCI157262
Hepatology (Baltimore, Md.)
2022 Oct 01
Balog, S;Fujiwara, R;Pan, SQ;El-Baradie, KB;Choi, HY;Sinha, S;Yang, Q;Asahina, K;Chen, Y;Li, M;Salomon, M;Ng, SW;Tsukamoto, H;
PMID: 36181700 | DOI: 10.1002/hep.32793
Immunity
2022 Jul 15
Dong, X;Limjunyawong, N;Sypek, EI;Wang, G;Ortines, RV;Youn, C;Alphonse, MP;Dikeman, D;Wang, Y;Lay, M;Kothari, R;Vasavda, C;Pundir, P;Goff, L;Miller, LS;Lu, W;Garza, LA;Kim, BS;Archer, NK;Dong, X;
PMID: 35882236 | DOI: 10.1016/j.immuni.2022.06.021
J Crohns Colitis.
2017 Nov 09
Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, Melham H, Weber A, Leucht K, Wolfram L, Hausmann M, Krieg C, Thomasson K, Boyman O, Frey-Wagner I, Rogler G, Wagner CA.
PMID: 29136128 | DOI: 10.1093/ecco-jcc/jjx147
Abstract
BACKGROUND AND AIMS:
During active inflammation tissue intraluminal intestinal pH is decreased in patients with inflammatory bowel disease (IBD). Acidic pH may play a role in IBD pathophysiology. Recently, proton sensing G-protein coupled receptors were identified, including GPR4, OGR1 (GPR68), and TDAG8 (GPR65). We investigated whether GPR4 is involved in intestinal inflammation.
METHODS:
The role of GPR4 was assessed in murine colitis models: chronic dextran sulphate sodium (DSS) administration and by crossbreeding into an IL-10 deficient background for development of spontaneous colitis. Colitis severity was assessed by body weight, colonoscopy, colon length, histological score, cytokine mRNA expression, and myeloperoxidase (MPO) activity. In the spontaneous Il-10-/- colitis model, the incidence of rectal prolapse and characteristics of lamina propria leukocytes (LPLs) were analyzed.
RESULTS:
Gpr4-/- mice showed reduced body weight loss and histology score after induction of chronic DSS colitis. In Gpr4-/- /Il-10-/- double knock-outs the onset and progression of rectal prolapse were significantly delayed and mitigated compared to Gpr4+/+ /Il-10-/- mice. Double knock-out mice showed lower histology scores, MPO activity, CD4 + T-helper cell infiltration, IFN-γ, iNOS, MCP-1 (CCL2), CXCL1 and CXCL2 expression compared to controls. In colon, GPR4 mRNA was detected in endothelial cells, some smooth muscle cells, and some macrophages.
CONCLUSION:
Absence of GPR4 ameliorates colitis in IBD animal models indicating an important regulatory rolein mucosal inflammation, thus providing a new link between tissue pH and the immune system. Therapeutic inhibition of GPR4 may be beneficial for the treatment of IBD.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com