Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for CXCL13

ACD can configure probes for the various manual and automated assays for CXCL13 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for CXCL13 (234)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (14)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • CXCL13 (10) Apply CXCL13 filter
  • Ccl19 (3) Apply Ccl19 filter
  • CXCL10 (2) Apply CXCL10 filter
  • GREM1 (2) Apply GREM1 filter
  • CXCL12 (2) Apply CXCL12 filter
  • CD3E (1) Apply CD3E filter
  • COL1A1 (1) Apply COL1A1 filter
  • CD34 (1) Apply CD34 filter
  • Rspo3 (1) Apply Rspo3 filter
  • Krt20 (1) Apply Krt20 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL11 (1) Apply CXCL11 filter
  • Ifng (1) Apply Ifng filter
  • EPCAM (1) Apply EPCAM filter
  • MMP3 (1) Apply MMP3 filter
  • IL1B (1) Apply IL1B filter
  • LTA (1) Apply LTA filter
  • IL6 (1) Apply IL6 filter
  • LCN2 (1) Apply LCN2 filter
  • LTB (1) Apply LTB filter
  • DPT (1) Apply DPT filter
  • NOTCH3 (1) Apply NOTCH3 filter
  • TNFSF13B (1) Apply TNFSF13B filter
  • MYH11 (1) Apply MYH11 filter
  • Cxcl1 (1) Apply Cxcl1 filter
  • VWF (1) Apply VWF filter
  • Tyrobp (1) Apply Tyrobp filter
  • GPNMB (1) Apply GPNMB filter
  • COL1A2 (1) Apply COL1A2 filter
  • Inhba (1) Apply Inhba filter
  • Inmt (1) Apply Inmt filter
  • Ch25h (1) Apply Ch25h filter
  • CXCL14 (1) Apply CXCL14 filter
  • PTHLH (1) Apply PTHLH filter
  • CSN3 (1) Apply CSN3 filter
  • CCL8 (1) Apply CCL8 filter
  • CCL21 (1) Apply CCL21 filter
  • Il-7 (1) Apply Il-7 filter
  • Cdk1 (1) Apply Cdk1 filter
  • TNFA (1) Apply TNFA filter
  • CXCL8 (1) Apply CXCL8 filter
  • CD31 (1) Apply CD31 filter
  • TBD (1) Apply TBD filter
  • FDCSP ? (1) Apply FDCSP ? filter
  • Hs-CD4 (1) Apply Hs-CD4 filter
  • Hs-CD8A (1) Apply Hs-CD8A filter
  • Hs-CR2 (1) Apply Hs-CR2 filter
  • Cdkn2a-tv2 (1) Apply Cdkn2a-tv2 filter
  • CCL21 / Ccl21a (1) Apply CCL21 / Ccl21a filter
  • CXCL13 / Cxcl13 (1) Apply CXCL13 / Cxcl13 filter

Product

  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Cancer (5) Apply Cancer filter
  • Inflammation (4) Apply Inflammation filter
  • Development (3) Apply Development filter
  • Aging (2) Apply Aging filter
  • HIV (1) Apply HIV filter
  • Immune Responses (1) Apply Immune Responses filter
  • Infectious (1) Apply Infectious filter
  • Lymph Nodes (1) Apply Lymph Nodes filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other: Lung (1) Apply Other: Lung filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Senescense (1) Apply Senescense filter
  • therapeutics (1) Apply therapeutics filter

Category

  • Publications (14) Apply Publications filter
Misexpression of genes lacking CpG islands drives degenerative changes during aging

Science advances

2021 Dec 17

Lee, JY;Davis, I;Youth, EHH;Kim, J;Churchill, G;Godwin, J;Korstanje, R;Beck, S;
PMID: 34910517 | DOI: 10.1126/sciadv.abj9111

[Figure: see text].
CXCL13-producing CD4+ T cells accumulate in early phase of tertiary lymphoid structures in ovarian cancer

JCI insight

2022 May 12

Ukita, M;Hamanishi, J;Yoshitomi, H;Yamanoi, K;Takamatsu, S;Ueda, A;Suzuki, H;Hosoe, Y;Furutake, Y;Taki, M;Abiko, K;Yamaguchi, K;Nakai, H;Baba, T;Matsumura, N;Yoshizawa, A;Ueno, H;Mandai, M;
PMID: 35552285 | DOI: 10.1172/jci.insight.157215

Tertiary lymphoid structures (TLSs) are transient ectopic lymphoid aggregates whose formation might be caused by chronic inflammation states, such as cancer. However, how TLSs are induced in the tumor microenvironment (TME) and how they affect patient survival are not well understood. We investigated TLS distribution in relation to tumor infiltrating lymphocytes (TILs) and related gene expression in high grade serous ovarian cancer (HGSC) specimens. CXCL13 gene expression correlated with TLS presence and the infiltration of T cells and B cells, and was a favorable prognostic factor for HGSC patients. Coexistence of CD8+ T cells and B-cell lineages in the TME significantly improved the prognosis of HGSC and was correlated with the presence of TLSs. CXCL13 expression was predominantly coincident with CD4+ T cells in TLSs and CD8+ T cells in TILs, and shifted from CD4+ T cells to CD21+ follicular dendritic cells as TLS matured. In a mouse ovarian cancer model, recombinant CXCL13 induced TLSs and enhanced survival by the infiltration of CD8+ T cells. These results suggest that TLS formation was associated with CXCL13-producing CD4+ T cells and that TLSs facilitated the coordinated antitumor response of cellular and humoral immunity in ovarian cancer.
Visualization and functional characterization of lymphoid organ fibroblasts

Immunological reviews

2021 Dec 05

Onder, L;Cheng, HW;Ludewig, B;
PMID: 34866192 | DOI: 10.1111/imr.13051

Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology

Journal of neuroinflammation

2022 Jul 04

Karaahmet, B;Le, L;Mendes, MS;Majewska, AK;O'Banion, MK;
PMID: 35787714 | DOI: 10.1186/s12974-022-02532-9

Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models.We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry.Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13.Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.
Close Association Between Altered Urine-urothelium Barrier and Tertiary Lymphoid Structure Formation in the Renal Pelvis During Nephritis

Journal of the American Society of Nephrology : JASN

2021 Oct 22

Ichii, O;Hosotani, M;Masum, MA;Horino, T;Nakamura, T;Namba, T;Otani, Y;Elewa, Y;Kon, Y;
PMID: 34686544 | DOI: 10.1681/ASN.2021040575

Background: Kidneys with chronic inflammation develop tertiary lymphoid structures (TLSs). Infectious pyelonephritis is characterized by renal pelvis (RP) inflammation. However, the pathological features of TLSs, including their formation and association with non-infectious nephritis, are unclear. Methods: RPs from humans and mice that were healthy or had non-infectious chronic nephritis, were analyzed for TLS development, and the mechanism of TLS formation investigated using urothelium or lymphoid structure cultures. Results: Regardless of infection, TLSs in the RP, termed urinary tract-associated lymphoid structures (UTALSs), formed in humans and mice with chronic nephritis. Moreover, urine played a unique role in UTALS formation. Specifically, we identified urinary IFN-γ as a candidate factor affecting urothelial barrier integrity because it alters occludin expression. In a nephritis mouse model, urine leaked from the lumen of the RP into the parenchyma. In addition, urine immunologically stimulated UTALS-forming cells via cytokine (IFN-γ, TNF-α) and chemokine (CXCL9, CXCL13) production. CXCL9 and CXCL13 were expressed in UTALS stromal cells and urine stimulation specifically induced CXCL13 in cultured fibroblasts. Characteristically, type XVII collagen (BP180), a candidate autoantigen of bullous pemphigoid, was ectopically localized in the urothelium covering UTALSs and associated with UTALS development by stimulating CXCL9 or IL-22 induction via the TNF-α/FOS/JUN pathway. Notably, UTALS development indices were positively correlated with chronic nephritis development. Conclusion: TLS formation in the RP is possible and altered urine-urothelium barrier-basedUTALS formation may represent a novel mechanism underlying the pathogenesis of chronic nephritis, regardless of urinary tract infection.
Immune subset-committed proliferating cells populate the human foetal intestine throughout the second trimester of gestation

Nature communications

2023 Mar 10

Guo, N;Li, N;Jia, L;Jiang, Q;Schreurs, M;van Unen, V;de Sousa Lopes, SMC;Vloemans, AA;Eggermont, J;Lelieveldt, B;Staal, FJT;de Miranda, NFCC;Pascutti, MF;Koning, F;
PMID: 36899020 | DOI: 10.1038/s41467-023-37052-4

The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.
A spatially resolved atlas of the human lung characterizes a gland-associated immune niche

Nature genetics

2022 Dec 21

Madissoon, E;Oliver, AJ;Kleshchevnikov, V;Wilbrey-Clark, A;Polanski, K;Richoz, N;Ribeiro Orsi, A;Mamanova, L;Bolt, L;Elmentaite, R;Pett, JP;Huang, N;Xu, C;He, P;Dabrowska, M;Pritchard, S;Tuck, L;Prigmore, E;Perera, S;Knights, A;Oszlanczi, A;Hunter, A;Vieira, SF;Patel, M;Lindeboom, RGH;Campos, LS;Matsuo, K;Nakayama, T;Yoshida, M;Worlock, KB;Nikolić, MZ;Georgakopoulos, N;Mahbubani, KT;Saeb-Parsy, K;Bayraktar, OA;Clatworthy, MR;Stegle, O;Kumasaka, N;Teichmann, SA;Meyer, KB;
PMID: 36543915 | DOI: 10.1038/s41588-022-01243-4

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.
Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34+ stromal cell subsets

Nature communications

2022 Nov 24

Pezoldt, J;Wiechers, C;Zou, M;Litovchenko, M;Biocanin, M;Beckstette, M;Sitnik, K;Palatella, M;van Mierlo, G;Chen, W;Gardeux, V;Floess, S;Ebel, M;Russeil, J;Arampatzi, P;Vafardanejad, E;Saliba, AE;Deplancke, B;Huehn, J;
PMID: 36433946 | DOI: 10.1038/s41467-022-34868-4

Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy

Science immunology

2022 Apr 01

Hoch, T;Schulz, D;Eling, N;Gómez, JM;Levesque, MP;Bodenmiller, B;
PMID: 35363540 | DOI: 10.1126/sciimmunol.abk1692

Intratumoral immune cells are crucial for tumor control and antitumor responses during immunotherapy. Immune cell trafficking into tumors is mediated by binding of specific immune cell receptors to chemokines, a class of secreted chemotactic cytokines. To broadly characterize chemokine expression and function in melanoma, we used multiplexed mass cytometry-based imaging of protein markers and RNA transcripts to analyze the chemokine landscape and immune infiltration in metastatic melanoma samples. Tumors that lacked immune infiltration were devoid of most of the profiled chemokines and exhibited low levels of antigen presentation and markers of inflammation. Infiltrated tumors were characterized by expression of multiple chemokines. CXCL9 and CXCL10 were often localized in patches associated with dysfunctional T cells expressing the B lymphocyte chemoattractant CXCL13. In tumors with B cells but no B cell follicles, T cells were the sole source of CXCL13, suggesting that T cells play a role in B cell recruitment and potentially in B cell follicle formation. B cell patches and follicles were also enriched with TCF7+ naïve-like T cells, a cell type that is predictive of response to immune checkpoint blockade. Our data highlight the strength of targeted RNA and protein codetection to analyze tumor immune microenvironments based on chemokine expression and suggest that the formation of tertiary lymphoid structures may be accompanied by naïve and naïve-like T cell recruitment, which may contribute to antitumor activity.
Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection

Communications biology

2021 Dec 02

Pezoldt, J;Wiechers, C;Erhard, F;Rand, U;Bulat, T;Beckstette, M;Brendolan, A;Huehn, J;Kalinke, U;Mueller, M;Strobl, B;Deplancke, B;Čičin-Šain, L;Sitnik, KM;
PMID: 34857864 | DOI: 10.1038/s42003-021-02882-9

Our understanding of the composition and functions of splenic stromal cells remains incomplete. Here, based on analysis of over 20,000 single cell transcriptomes of splenic fibroblasts, we characterized the phenotypic and functional heterogeneity of these cells in healthy state and during virus infection. We describe eleven transcriptionally distinct fibroblastic cell clusters, reassuring known subsets and revealing yet unascertained heterogeneity amongst fibroblasts occupying diverse splenic niches. We further identify striking differences in innate immune signatures of distinct stromal compartments in vivo. Compared to other fibroblasts and to endothelial cells, Ly6C+ fibroblasts of the red pulp were selectively endowed with enhanced interferon-stimulated gene expression in homeostasis, upon systemic interferon stimulation and during virus infection in vivo. Collectively, we provide an updated map of fibroblastic cell diversity in the spleen that suggests a specialized innate immune function for splenic red pulp fibroblasts.
Implications of the accumulation of CXCR5+ NK cells in lymph nodes of HIV-1 infected patients

EBioMedicine

2021 Dec 29

Guo, AL;Jiao, YM;Zhao, QW;Huang, HH;Deng, JN;Zhang, C;Fan, X;Xu, RN;Zhang, JY;Zhen, C;Xie, ZM;Qin, YM;Xu, JQ;Yang, Y;Shi, M;Huang, L;Song, JW;Wang, FS;
PMID: 34973625 | DOI: 10.1016/j.ebiom.2021.103794

B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients.Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry.CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13-the ligand of CXCR5-was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells.During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
Spatially organized multicellular immune hubs in human colorectal cancer

Cell

2021 Aug 24

Pelka, K;Hofree, M;Chen, JH;Sarkizova, S;Pirl, JD;Jorgji, V;Bejnood, A;Dionne, D;Ge, WH;Xu, KH;Chao, SX;Zollinger, DR;Lieb, DJ;Reeves, JW;Fuhrman, CA;Hoang, ML;Delorey, T;Nguyen, LT;Waldman, J;Klapholz, M;Wakiro, I;Cohen, O;Albers, J;Smillie, CS;Cuoco, MS;Wu, J;Su, MJ;Yeung, J;Vijaykumar, B;Magnuson, AM;Asinovski, N;Moll, T;Goder-Reiser, MN;Applebaum, AS;Brais, LK;DelloStritto, LK;Denning, SL;Phillips, ST;Hill, EK;Meehan, JK;Frederick, DT;Sharova, T;Kanodia, A;Todres, EZ;Jané-Valbuena, J;Biton, M;Izar, B;Lambden, CD;Clancy, TE;Bleday, R;Melnitchouk, N;Irani, J;Kunitake, H;Berger, DL;Srivastava, A;Hornick, JL;Ogino, S;Rotem, A;Vigneau, S;Johnson, BE;Corcoran, RB;Sharpe, AH;Kuchroo, VK;Ng, K;Giannakis, M;Nieman, LT;Boland, GM;Aguirre, AJ;Anderson, AC;Rozenblatt-Rosen, O;Regev, A;Hacohen, N;
PMID: 34450029 | DOI: 10.1016/j.cell.2021.08.003

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?