ACD can configure probes for the various manual and automated assays for CXCL12 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Oncogene.
2018 May 03
Ahirwar DK, Nasser MW, Ouseph MM, Elbaz M, Cuitiño MC, Kladney RD, Varikuti S, Kaul K, Satoskar AR, Ramaswamy B, Zhang X, Ostrowski MC, Leone G, Ganju RK.
PMID: 29720724 | DOI: 10.1038/s41388-018-0263-7
The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.
Tumour Biol.
2015 Dec 17
Stanisavljević L, Aßmus J, Storli KE, Leh SM, Dahl O, Myklebust MP.
PMID: 26678887 | DOI: -
The CXCL12-CXCR4 axis is proposed to mediate metastasis formation. In this study, we examined CXCL12, CXCR4 and the relative CXCL12-CXCR4 expression as prognostic factors in two cohorts of colon cancer patients. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to study CXCR4, CXCL12 and relative CXCL12-CXCR4 expression in tissue microarrays. Our study included totally 596 patients, 290 in cohort 1 and 306 in cohort 2. For tumour, node, metastasis (TNM) stage III, low nuclear expression of CXCR4 was a positive prognostic factor for 5-year disease-free survival (DFS) in cohort 1 (P = 0.007) and cohort 2 (P = 0.023). In multivariate analysis for stage III, nuclear expression of CXCR4 in cohort 1 was confirmed as a prognostic factor for DFS (hazard ratio (HR), 0.27; 95 % CI, 0.09 to 0.77). For TNM stage III, high cytoplasmic expression of CXCL12 was associated with better 5-year DFS in both cohorts (P = 0.006 and P = 0.006, respectively). We further validated the positive prognostic value of CXCL12 expression for 5-year DFS in stage III with ISH (P = 0.022). For TNM stage III, the relative CXCL12-CXCR4 expression (CXCL12 > CXCR4 vs CXCL12 = CXCR4 vs CXCL12 < CXCR4) was a prognostic factor for 5-year DFS in cohort 1 (92 % vs 46 % vs 31 %, respectively; P < 0.001) and cohort 2 (92 % vs 66 % vs 30 %, respectively; P = 0.006). In conclusion, CXCL12 and relative CXCL12-CXCR4 expression are independent prognostic factors for 5-year DFS in TNM stage III colon cancer.
Journal of gastroenterology
2022 Nov 03
Ouahoud, S;Westendorp, BF;Voorneveld, PW;Abudukelimu, S;Koelink, PJ;Pascual Garcia, E;Buuren, JFI;Harryvan, TJ;Lenos, KJ;van Wezel, T;Offerhaus, JA;Fariña-Sarasqueta, A;Crobach, S;Slingerland, M;Hardwick, JCH;Hawinkels, LJAC;
PMID: 36326956 | DOI: 10.1007/s00535-022-01928-x
Nature immunology
2023 Feb 27
Steele, MM;Jaiswal, A;Delclaux, I;Dryg, ID;Murugan, D;Femel, J;Son, S;du Bois, H;Hill, C;Leachman, SA;Chang, YH;Coussens, LM;Anandasabapathy, N;Lund, AW;
PMID: 36849745 | DOI: 10.1038/s41590-023-01443-y
Development (Cambridge, England)
2022 Nov 01
Chandrasekaran, P;Negretti, NM;Sivakumar, A;Liberti, DC;Wen, H;Peers de Nieuwburgh, M;Wang, JY;Michki, NS;Chaudhry, FN;Kaur, S;Lu, M;Jin, A;Zepp, JA;Young, LR;Sucre, JMS;Frank, DB;
PMID: 36239312 | DOI: 10.1242/dev.200909
Cancer Discov.
2017 Mar 08
Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, Helenius K, Olson BM, Pyzer AR, Wang LC, Elemento O, Novak J, Thornley TB, Asara JM, Montaser L, Timmons JJ, Morgan TM, Wang Y, Levantini E, Clohessy JG, Kelly K, Pandolfi PP, Rose
PMID: 28274958 | DOI: 10.1158/2159-8290.CD-16-0778
Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here we show that cabozantinib rapidly eradicates invasive, poorly-differentiated PTEN/p53 deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor, plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anti-cancer innate immune response, resulting in tumor clearance.
Nat. Commun.
2018 Mar 13
Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, Vincent-Salomon A, Mechta-Grigoriou F.
PMID: - | DOI: 10.1038/s41467-018-03348-z
High-grade serous ovarian cancers (HGSOC) have been subdivided into molecular subtypes. The mesenchymal HGSOC subgroup, defined by stromal-related gene signatures, is invariably associated with poor patient survival. We demonstrate that stroma exerts a key function in mesenchymal HGSOC. We highlight stromal heterogeneity in HGSOC by identifying four subsets of carcinoma-associated fibroblasts (CAF-S1-4). Mesenchymal HGSOC show high content in CAF-S1 fibroblasts, which exhibit immunosuppressive functions by increasing attraction, survival, and differentiation of CD25+FOXP3+ T lymphocytes. The beta isoform of the CXCL12 chemokine (CXCL12β) specifically accumulates in the immunosuppressive CAF-S1 subset through a miR-141/200a dependent-mechanism. Moreover, CXCL12β expression in CAF-S1 cells plays a crucial role in CAF-S1 immunosuppressive activity and is a reliable prognosis factor in HGSOC, in contrast to CXCL12α. Thus, our data highlight the differential regulation of the CXCL12α and CXCL12β isoforms in HGSOC, and reveal a CXCL12β-associated stromal heterogeneity and immunosuppressive environment in mesenchymal HGSOC.
bioRxiv : the preprint server for biology
2023 Jan 21
Collins, JM;Lang, A;Parisi, C;Moharrer, Y;Nijsure, MP;Kim, JHT;Szeto, GL;Qin, L;Gottardi, RL;Dyment, NA;Nowlan, NC;Boerckel, JD;
PMID: 36711590 | DOI: 10.1101/2023.01.20.524918
British journal of haematology
2021 May 01
Aoki, K;Kurashige, M;Ichii, M;Higaki, K;Sugiyama, T;Kaito, T;Ando, W;Sugano, N;Sakai, T;Shibayama, H;HANDAI Clinical Blood Club, ;Takaori-Kondo, A;Morii, E;Kanakura, Y;Nagasawa, T;
PMID: 33837967 | DOI: 10.1111/bjh.17396
Cell
2018 Sep 27
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067
Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.
Haematologica
2019 Jan 24
Zhu X, Wang Y, Jiang Q, Jiang H, Lu J, Wang Y, Kong Y, Chang Y, Xu L, Peng J, Hou M, Huang X, Zhang X.
PMID: 30679324 | DOI: 10.3324/haematol.2018.204446
Peripheral enhanced complement activation has long been considered as one of the major pathogenesis of immune thrombocytopenia. Impaired bone marrow microenvironment, especially the dysfunction of mesenchymal stem cells, has been observed in patients with immune thrombocytopenia. However, the potential role of the complement system involved in impaired bone marrow microenvironment remains poorly understood. Here, bone marrow samples of patients were divided into the MSC-ITP-C+ and MSC-ITP-C- groups based on the deposition of the complement components on the surfaces of mesenchymal stem cells. Reduced and dysfunctional mesenchymal stem cells, characterized by reduced proliferation capacity, increased apoptosis as well as abnormal secretion of interleukin-1β and C-X-C motif chemokine ligand 12, were observed in the MSC-ITP-C+ group. In vitro treatment with all-trans retinoic acid quantitatively and functionally improved MSC-ITP-C+ by upregulating DNA hypermethylation of the interleukin-1β promoter. In vivo studies showed that all-trans retinoic acid could rescue the impaired mesenchymal stem cells to support the thrombopoietic niche in both patients and the murine model with immune thrombocytopenia. Taken together, these results indicate that deficient mesenchymal stem cells mediated by the complement-IL-1β loop play a role in the pathogenesis of immune thrombocytopenia. All-trans retinoic acid represents a promising therapeutic approach in patients with immune thrombocytopenia by repairing impaired mesenchymal stem cells.
Nature genetics
2022 Dec 21
Madissoon, E;Oliver, AJ;Kleshchevnikov, V;Wilbrey-Clark, A;Polanski, K;Richoz, N;Ribeiro Orsi, A;Mamanova, L;Bolt, L;Elmentaite, R;Pett, JP;Huang, N;Xu, C;He, P;Dabrowska, M;Pritchard, S;Tuck, L;Prigmore, E;Perera, S;Knights, A;Oszlanczi, A;Hunter, A;Vieira, SF;Patel, M;Lindeboom, RGH;Campos, LS;Matsuo, K;Nakayama, T;Yoshida, M;Worlock, KB;Nikolić, MZ;Georgakopoulos, N;Mahbubani, KT;Saeb-Parsy, K;Bayraktar, OA;Clatworthy, MR;Stegle, O;Kumasaka, N;Teichmann, SA;Meyer, KB;
PMID: 36543915 | DOI: 10.1038/s41588-022-01243-4
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com