The American journal of surgical pathology
Hopkins, MR;Palsgrove, DN;Ronnett, BM;Vang, R;Lin, J;Murdock, TA;
PMID: 36069815 | DOI: 10.1097/PAS.0000000000001970
Human papillomavirus (HPV)-independent primary endometrial squamous cell carcinoma (PESCC) is a rare but aggressive subtype of endometrial carcinoma for which little is known about the genomic characteristics. Traditional criteria have restricted the diagnosis of PESCC to cases without any cervical involvement. However, given that modern ancillary techniques can detect HPV and characteristic genetic alterations that should identify the more common mimics in the differential diagnosis, including endometrial endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma, those criteria may benefit from revision. To further characterize PESCC, we identified 5 cases of pure squamous cell carcinoma dominantly involving the endometrium that had the potential to be PESCC: 1 case involving only the endometrium and 4 cases with some involvement of the cervix. Clinicopathologic features were assessed and immunohistochemical analysis (p16, estrogen receptor, progesterone receptor, and p53), HPV RNA in situ hybridization (high-risk and low-risk cocktails and targeted probes for 16 and 18), and molecular studies were performed. All tumors showed aberrant/mutation-type p53 expression, were negative for estrogen receptor, progesterone receptor, and p16, and had no detectable HPV. Per whole-exome sequencing, 4 of the 5 tumors demonstrated comutations in TP53 and CDKN2A (p16). Four patients died of disease within 20 months (range, 1 to 20 mo; mean, 9 mo), and 1 patient had no evidence of disease at 38 months. PESCC represents a unique, clinically aggressive subtype of endometrial cancer with TP53 and CDKN2A comutations. This characteristic profile, which is similar to HPV-independent squamous cell carcinoma of the vulva, is distinct from endometrioid carcinoma with extensive squamous differentiation and HPV-associated primary cervical squamous cell carcinoma and can be used to distinguish PESCC from those mimics even when cervical involvement is present. Diagnostic criteria for PESCC should be relaxed to allow for cervical involvement when other pathologic features are consistent with, and ancillary techniques are supportive of classification as such.
Diaz RJ, Luck A, Bondoc A, Golbourn B, Picard D, Remke M, Loukides J, Sabha N, Smith C, Cusimano MD, Rutka JT.
PMID: 30248342 | DOI: 10.1016/j.ajpath.2018.08.004
Patient-derived xenografts retain the genotype of the parent tumors more readily than tumor cells maintained in culture. The two previously reported clival chordoma xenografts were derived from recurrent tumors after radiation. To study the genetics of clival chordoma in the absence of prior radiation exposure we established a patient-derived xenograft at primary resection of a clival chordoma. Epicranial grafting of clival chordoma collected during surgery was performed. Tumor growth was established in a nonobese diabetic/severe combined immunodeficiency mouse and tumors have been passaged serially for seven generations. Physalliferous cell architecture was shown in the regenerated tumors, which stained positive for Brachyury, cytokeratin, and S100 protein. The tumors showed bone invasion. Single-nucleotide polymorphism analysis of the tumor xenograft was compared with the parental tumor. Copy number gain of the T gene (brachyury) and heterozygous loss of CDKN2A was observed. Heterozygous loss of the tumor-suppressor FHIT gene also was observed, although protein expression was preserved. Accumulation of copy number losses and gains as well as increased growth rate was observed over three generations. The patient-derived xenograft reproduces the phenotype of clival chordoma. This model can be used in the future to study chordoma biology and assess novel treatments.
Investigative ophthalmology & visual science
Ramberg, I;Vieira, FG;Toft, PB;von Buchwald, C;Funding, M;Nielsen, FC;Heegaard, S;
PMID: 34779821 | DOI: 10.1167/iovs.62.14.11
The genomic alterations contributing to the pathogenesis of conjunctival squamous cell carcinomas (SCCs) and their precursor lesions are poorly understood and hamper our ability to develop molecular therapies to reduce the recurrence rates and treatment-related morbidities of this disease. We aimed to characterize the somatic DNA alterations in human papillomavirus (HPV)-positive and HPV-negative conjunctival SCC.Patients diagnosed with conjunctival SCC in situ or SCC treated in ocular oncology referral centers in Denmark were included. HPV detection (HPV DNA PCR, p16 immunohistochemistry, and mRNA in situ hybridization) and targeted capture-based next-generation sequencing of 523 genes frequently involved in cancer were performed to describe the mutational profile based on HPV status.Tumor tissue was available in 33 cases (n = 8 conjunctival SCCs in situ, n = 25 conjunctival SCCs), constituting 25 male and 8 female patients. Nine cases were HPV positive. The HPV-positive SCCs in situ and SCCs were characterized by transcriptionally active high-risk HPV (types 16 and 39) within the tumor cells, frequent mutations in PIK3CA (n = 5/9), and wild-type TP53, CDKN2A, and RB1, while the HPV-negative counterparts harbored frequent mutations in TP53 (n = 21/24), CDKN2A (n = 7/24), and RB1 (n = 6/24).Our findings have delineated two potentially distinct distributions of somatic mutations in conjunctival SCC based on HPV status-pointing to different biological mechanisms of carcinogenesis. The present findings support a causal role of HPV in a subset of conjunctival SCC.
Journal of gastroenterology
Tanaka, T;Masuda, A;Inoue, J;Hamada, T;Ikegawa, T;Toyama, H;Sofue, K;Shiomi, H;Sakai, A;Kobayashi, T;Tanaka, S;Nakano, R;Yamada, Y;Ashina, S;Tsujimae, M;Yamakawa, K;Abe, S;Gonda, M;Masuda, S;Inomata, N;Uemura, H;Kohashi, S;Nagao, K;Kanzawa, M;Itoh, T;Ueda, Y;Fukumoto, T;Kodama, Y;
PMID: 36705749 | DOI: 10.1007/s00535-022-01939-8
Tertiary lymphoid structure (TLS) reflects an intense immune response against cancer, which correlates with favorable patient survival. However, the association of TLS with tumor-infiltrating lymphocytes (TILs) and clinical outcomes has not been investigated comprehensively in pancreatic ductal adenocarcinoma (PDAC).We utilized an integrative molecular pathological epidemiology database on 162 cases with resected PDAC, and examined TLS in relation to levels of TILs, patient survival, and treatment response. In whole-section slides, we assessed the formation of TLS and conducted immunohistochemistry for tumor-infiltrating T cells (CD4, CD8, CD45RO, and FOXP3). As confounding factors, we assessed alterations of four main driver genes (KRAS, TP53, CDKN2A [p16], and SMAD4) using next-generation sequencing and immunohistochemistry, and tumor CD274 (PD-L1) expression assessed by immunohistochemistry.TLSs were found in 112 patients with PDAC (69.1%). TLS was associated with high levels of CD4+ TILs (multivariable odds ratio [OR], 3.50; 95% confidence interval [CI] 1.65-7.80; P = 0.0002), CD8+ TILs (multivariable OR, 11.0; 95% CI 4.57-29.7, P < 0.0001) and CD45RO+ TILs (multivariable OR, 2.65; 95% CI 1.25-5.80, P = 0.01), but not with levels of FOXP3+ TILs. TLS was associated with longer pancreatic cancer-specific survival (multivariable hazard ratio, 0.37; 95% CI 0.25-0.56, P < 0.0001) and favorable outcomes of adjuvant S-1-treatment. TLS was not associated with driver gene alterations but tumor CD274 negative expression.Our comprehensive data supports the surrogacy of TLS for vigorous anti-tumor immune response characterized by high levels of helper and cytotoxic T cells and their prognostic role.
Liao, X;Xia, X;Su, W;Yan, H;Ma, Y;Xu, L;Luo, H;Liu, W;Yin, D;Zhang, WH;Chen, HN;Deng, Y;Ren, Z;Yu, Z;Liao, F;Chen, K;Cao, M;Zhang, Y;Zhang, W;Wang, W;Zhao, JN;Xu, H;Shu, Y;
PMID: 35151492 | DOI: 10.1016/j.ygyno.2022.01.036
Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive type of endocervical adenocarcinoma (ECA) with distinct histopathologic features and unfavorable treatment outcomes, but no genomic prognostic factor has been revealed. We aimed to systematically investigate the somatic alterations of GCA at genome-wide level and evaluate their prognostic value.We performed whole-exome sequencing (WES) on 25 pairs of tumor and matched normal samples to characterize the genomic features of Chinese patients with GCA and investigated their relations to histopathological characterizations and prognosis. The prognostic value of the genomic alterations was evaluated in a total of 58 GCA patients.Mutations were commonly observed in reported GCA-related driver genes, including TP53 (32%), CDKN2A (20%), SKT11 (20%), BRCA2 (12%), SMAD4 (12%), and ERBB2 (12%). Recurrent novel trunk mutations were also observed in PBRM1 (12%), FRMPD4 (12%), and NOP2 (8%) with high variant allele frequency. Moreover, enrichment of the APOBEC signature was attributed to frequent gain of somatic copy number alteration (SCNA) of APOBEC3B (20%), which perfectly matched the nuclear-positive staining of APOBEC3B through immunohistochemistry. In contrast, APOBEC3B alteration was absent in patients with conventional type of ECA (N = 52). Notably, positive APOBEC3B was consistently enriched in patients with favorable prognosis in both the discovery cohort and an additional 33 GCA patients, thus indicating a significant association with lower relapse risk of GCA independent of cancer stage (P = 0.02).Our results can aid understanding of the molecular basis of GCA in the Chinese population by providing genomic profiles and highlighting the potential prognostic value of APOBEC3B for GCA through routine clinical IHC.
Abstract LB190: DNAscopeTM: A novel chromogenic in-situ hybridization technology for high-resolution detection of DNA copy number and structural variations
Molecular and Cellular Biology/Genetics
Wang, L;Tondnevis, F;Todorov, C;Gaspar, J;Sahajan, A;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb190
Genomic DNA anomalies such as copy number variations (gene duplication, amplification, deletion) and gene rearrangements are important biomarkers and drug targets in many cancer types. DNA in-situ hybridization (ISH) is the gold standard method to directly visualize these molecular alterations in formalin-fixed paraffin-embedded (FFPE) tumor tissues at single-cell resolution within a histological section. However, currently available fluorescent ISH (FISH) assays provide limited morphological detail due to the use of fluorescent nuclear staining compared to chromogenic staining. Furthermore, FISH techniques rely on expensive fluorescence microscopes, risk loss of fluorescent signal over time and involve tedious imaging at high magnifications (100X). There is thus an unmet need for a sensitive and robust chromogenic DNA-ISH assay that can enable high-resolution detection of genomic DNA targets with the ease of bright-field microscopy. We present here DNAscope - a novel chromogenic DNA-ISH assay - for detecting and visualizing genomic DNA targets under a standard light microscope. DNAscope is based on the widely used RNAscope double-Z probe design and signal amplification technology and provides unparalleled sensitivity and specificity with large signal dots readily visualized at 40X magnification and with full morphological context. Furthermore, DNAscope ensures specific DNA detection without interference from RNA due to the use of a novel RNA removal method. Using a duplex chromogenic detection assay in red and blue, we demonstrate highly specific and efficient detection of gene rearrangements (ALK, ROS1, RET and NTRK1), gene amplification (ERBB2, EGFR, MET) and deletion (TP53 and CDKN2A). The DNAscope assay has been carefully optimized for probe signal size and color contrast to enable easy interpretation of signal patterns under conventional light microscopy or digital pathology. Compared to conventional FISH assays, DNAscope probes are standard oligos that are designed in silico to be free of any repetitive sequences and can be rapidly synthesized for any DNA target. In conclusion, the DNAscope assay provides a powerful and convenient alternative to commonly used FISH assays in many cancer research applications.