Am J Respir Crit Care Med. 2018 Dec 15.
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Abstract RATIONALE: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. OBJECTIVES: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells or other cell types in lung tissue from subjects with pulmonary fibrosis compared with controls. METHODS: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data in using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. MEASUREMENTS AND MAIN RESULTS: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to non-overlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. CONCLUSIONS: We generated a single cell atlas of pulmonary fibrosis. Using this atlas we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Journal for immunotherapy of cancer
Michels, KR;Sheih, A;Hernandez, SA;Brandes, AH;Parrilla, D;Irwin, B;Perez, AM;Ting, HA;Nicolai, CJ;Gervascio, T;Shin, S;Pankau, MD;Muhonen, M;Freeman, J;Gould, S;Getto, R;Larson, RP;Ryu, BY;Scharenberg, AM;Sullivan, AM;Green, S;
PMID: 36918221 | DOI: 10.1136/jitc-2022-006292
Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation.UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice.In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy.These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.
Journal for ImmunoTherapy of Cancer
Jabado, O;Fan, L;Souza, P;Harris, A;Chaparro, A;Qutaish, M;Si, H;Dannenberg, J;Sasser, K;Couto, S;Fereshteh, M;
| DOI: 10.1136/jitc-2021-sitc2021.928
BackgroundPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with short overall survival; the standard of care (SoC) is chemotherapy. Immunotherapies in development aim to remodel the stroma by depleting immunosuppressive cell types or using T-cell redirection to kill tumor cells. To date, none of these methods have improved overall survival beyond SoC. Next generation immunotherapies that employ histopathology and molecular subtyping1 for target and patient selection may succeed. Here we leverage a spatial transcriptomics platform (Nanostring Digital Spatial Profiling, DSP) to reveal molecular signaling in tumoral and stromal cells in 57 PDAC patients using tumor microarrays (TMAs). This approach is rapid and clinically relevant as molecular and histology data can be easily bridged.MethodsTMAs generated from surgical resection tissue were commercially sourced. DSP was performed using the CTA RNA panel (1,800 target genes) using PanCK fluorescence for tumor/stroma segmentation. In parallel, slides were chromogenically stained for T-cells (CD3) and macrophages (CD68/CD163). Differential gene expression, gene signature and gene co-expression network analysis was performed using linear models in R.2 3ResultsDifferential gene expression analysis and correlation to IHC confirmed the DSP platform successfully profiled tumor and stromal compartments (figure 1). Immune cell signatures4 and pathway analysis revealed a heterogenous stromal environment. Using a fibroblast gene signature derived from single-cell RNAseq5 we found fibroblast density was positively correlated to PDGFR signaling and MHC-II expression but negatively correlated to B, CD4+ T and neutrophil cell levels (figure 2a). This finding supports the idea that atypical antigen presentation in cancer associated fibroblasts (CAFs) may be exploitable for immunotherapies.6 We constructed a co-expression network from in-situ stromal gene expression and used it to identify receptors coordinately expressed with the immunosuppressive macrophage marker CSF1R as a bispecific antibody partner (figure 2b).7 Classical macrophage markers were identified but also receptors with lesser-known functions in macrophages (TIM3/HAVCR2, FPR3, MS4A6A, LILRB4). Surveying target pairs in this method allows rapid, patient-specific confirmation in serial TMA sections with singleplex IHC or RNAscope.Abstact 928 Figure 1Segmentation strategy and validation of DSP (A) PanCK, CD68 and CD3 staining from two representative tumor cores; (B, C) correlation of gene transcripts in stroma to cell counts from chromogenic staining; (D) heatmap of selected genes differentially expressed in tumor and stroma (n=57 patients).Abstract 928 Figure 2Exploration of the stromal compartment in PDAC TMAs. (A) Heatmap of selected cell type and gene signatures from gene expression in the stroma, color represents single sample enrichment score using GSVA method; (B) a gene co-expression subnetwork in the stroma centered on CSF1R, edge thickness represents strength of correlation, green nodes have evidence for cell surface expression based on proteomic profiling.7ConclusionsIn this study we were able to recapitulate known PDAC biology using very small samples of primary tumors. The combination of TMAs and DSP enables a rapid validation of targets and hypothesis generation for bispecific parings. Further analysis of untreated (n=14) and post-adjuvant chemotherapy (n=26) patients using RNA DSP, IHC and bulk RNAseq is under way. Results from this cohort will enable an integrated histopathology and molecular approach to developing next-generation immunotherapies.ReferencesCollisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2019 April;16(4):207-220.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research 43(7):e47.Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics 14,7.Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017 January 3;18(1):248-262.Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016 April 8;352(6282):189-96.Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019 August;9(8):1102-1123. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Härtlová A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B. A mass spectrometric-derived cell surface protein atlas. PLoS One 2015 April 20;10(3):e0121314.Ethics ApprovalSpecimens were harvested from unused tissue after a surgical tumor resection procedure. A discrete legal consent form from both hospital and individuals was obtained by the commercial tissue vendor BioMax US for all samples analyzed in this abstract. All human tissues are collected under HIPPA approved protocols.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.