Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for CD4

ACD can configure probes for the various manual and automated assays for CD4 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for CD4 gene.

  • RNA expression of CD4 gene in Human Esophageal cancer sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of CD4 gene in Human Glioma sample using RNAscope™ 2.5 HD Assay Brown

  • RNA expression of CD4 gene in Human Lymphoma sample using RNAscope™ 2.5 HD Assay Brown

  • Probes for CD4 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • CD4 (16) Apply CD4 filter
  • (-) Remove TBD filter TBD (7)
  • SIV (6) Apply SIV filter
  • Ifng (5) Apply Ifng filter
  • HIV (5) Apply HIV filter
  • Cd8a (4) Apply Cd8a filter
  • CXCL10 (4) Apply CXCL10 filter
  • Cd8 (4) Apply Cd8 filter
  • Foxp3 (3) Apply Foxp3 filter
  • CD3 (3) Apply CD3 filter
  • (-) Remove IL17A filter IL17A (2)
  • IL-10 (2) Apply IL-10 filter
  • CXCL9 (2) Apply CXCL9 filter
  • (-) Remove SIVmac239 filter SIVmac239 (2)
  • TGF-b (2) Apply TGF-b filter
  • Ifnγ (2) Apply Ifnγ filter
  • MCP-1 (1) Apply MCP-1 filter
  • CD68 (1) Apply CD68 filter
  • CCL5 (1) Apply CCL5 filter
  • Il10 (1) Apply Il10 filter
  • CTLA4 (1) Apply CTLA4 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCR4 (1) Apply CXCR4 filter
  • CD19 (1) Apply CD19 filter
  • Prdm1 (1) Apply Prdm1 filter
  • Rorc (1) Apply Rorc filter
  • Gzmb (1) Apply Gzmb filter
  • IL4 (1) Apply IL4 filter
  • MYC (1) Apply MYC filter
  • NCR1 (1) Apply NCR1 filter
  • TCF7 (1) Apply TCF7 filter
  • Cd163 (1) Apply Cd163 filter
  • TRD (1) Apply TRD filter
  • Pax5 (1) Apply Pax5 filter
  • IRF4 (1) Apply IRF4 filter
  • NCAM1 (1) Apply NCAM1 filter
  • IL11 (1) Apply IL11 filter
  • IFN-γ (1) Apply IFN-γ filter
  • PD-L1 (1) Apply PD-L1 filter
  • HPV HR7 (1) Apply HPV HR7 filter
  • MusPV1 E6/E7 (1) Apply MusPV1 E6/E7 filter
  • E7 (1) Apply E7 filter
  • IL-12 (1) Apply IL-12 filter
  • Il-1b (1) Apply Il-1b filter
  • TNFA (1) Apply TNFA filter
  • MuLV vector RNA (1) Apply MuLV vector RNA filter
  • IFN-g (1) Apply IFN-g filter
  • Erk5 (1) Apply Erk5 filter
  • il11ra (1) Apply il11ra filter
  • PD-1 (1) Apply PD-1 filter

Product

  • TBD (3) Apply TBD filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (1) Apply RNAscope filter

Research area

  • HIV (3) Apply HIV filter
  • Infectious Disease (2) Apply Infectious Disease filter
  • Inflammation (2) Apply Inflammation filter
  • Aging (1) Apply Aging filter
  • Cancer (1) Apply Cancer filter
  • Cell Senescence (1) Apply Cell Senescence filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Neuroscience (1) Apply Neuroscience filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Cell senescence (1) Apply Other: Cell senescence filter
  • Vaccines (1) Apply Vaccines filter

Category

  • Publications (11) Apply Publications filter
CD4 T cells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection

Cell reports

2022 May 31

Foreman, TW;Nelson, CE;Kauffman, KD;Lora, NE;Vinhaes, CL;Dorosky, DE;Sakai, S;Gomez, F;Fleegle, JD;Parham, M;Perera, SR;Lindestam Arlehamn, CS;Sette, A;Tuberculosis Imaging Program, ;Brenchley, JM;Queiroz, ATL;Andrade, BB;Kabat, J;Via, LE;Barber, DL;
PMID: 35649361 | DOI: 10.1016/j.celrep.2022.110896

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.
Cytotoxic CD4 + T Cells Eliminate Senescent Cells by Targeting Commensal Cytomegalovirus Antigen

SSRN Electronic Journal

2022 May 27

Hasegawa, T;Oka, T;Son, H;Azin, M;Eisenhaure, T;Lieb, D;Hacohen, N;Demehri, S;
| DOI: 10.2139/ssrn.4102631

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a commensal virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old compared with young skin. However, they did not increase with advancing age in elderly. Increased CXCL9 and cytotoxic CD4+ T cell (CD4 CTL) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTL eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner and HCMV-gB activated CD4 CTL from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which can be directly eliminated by CD4 CTL through the recognition of the HCMV-gB antigen.
Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen

Cell

2023 Mar 30

Hasegawa, T;Oka, T;Son, HG;Oliver-García, VS;Azin, M;Eisenhaure, TM;Lieb, DJ;Hacohen, N;Demehri, S;
PMID: 37001502 | DOI: 10.1016/j.cell.2023.02.033

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.
HIV DNA reservoir and elevated PD-1 expression of CD4 T-cell subsets particularly persist in the terminal ileum of HIV-positive patients despite cART

HIV medicine

2021 Jan 09

Horn, C;Augustin, M;Ercanoglu, MS;Heger, E;Knops, E;Bondet, V;Duffy, D;Chon, SH;Nierhoff, D;Oette, M;Schäfer, H;Vivaldi, C;Held, K;Anderson, J;Geldmacher, C;Suárez, I;Rybniker, J;Klein, F;Fätkenheuer, G;Müller-Trutwin, M;Lehmann, C;
PMID: 33421299 | DOI: 10.1111/hiv.13031

Despite its importance as an HIV anatomic sanctuary, little is known about the characteristics of the HIV reservoir in the terminal ileum (TI). In blood, the immune checkpoint inhibitor programmed-death-1 (PD-1) has been linked to the HIV reservoir and T-cell immune dysfunction. We thus evaluated PD-1 expression and cell-associated HIV DNA in memory CD4 T-cell subsets from TI, peripheral blood (PB) and rectum (RE) of untreated and treated HIV-positive patients to identify associations between PD-1 and HIV reservoir in other sites. Using mononuclear cells from PB, TI and RE of untreated HIV-positive (N = 6), treated (n = 18) HIV-positive and uninfected individuals (n = 16), we identified and sorted distinct memory CD4 T-cell subsets by flow cytometry, quantified their cell-associated HIV DNA using quantitative PCR and assessed PD-1 expression levels using geometric mean fluorescence intensity. Combined HIV-1 RNA in situ hybridization and immunohistochemistry was performed on ileal biopsy sections. Combined antiretroviral therapy (cART)-treated patients with undetectable HIV RNA and significantly lower levels of HIV DNA in PB showed particularly high PD-1 expression in PB and TI, and high HIV DNA levels in TI, irrespective of clinical characteristics. By contrast, in treatment-naïve patients HIV DNA levels in memory CD4 T-cell subsets were high in PB and TI. Elevated PD-1 expression on memory CD4 T-cells in PB and TI despite treatment points to continuous immune dysfunction and underlines the importance of evaluating immunotherapy in reversing HIV latency and T-cell reconstitution. As HIV DNA particularly persists in TI despite cART, investigating samples from TI is crucial in understanding HIV immunopathogenesis.
PP 6.2- 00106 CAR/CXCR5 T cells contact HIV vRNA+ cells in HIV-infected humanized DRAGA mice

Journal of Virus Eradication

2022 Dec 01

Pumtang-On, P;Sevcik, E;Davey, B;Goodarzi, N;Vezys, V;Casares, S;Rao, M;Skinner, P;
| DOI: 10.1016/j.jve.2022.100255

Background: HIV-specific chimeric antigen receptor T (CAR T) cells are being developed as a potential approach towards curing HIV infection. During infection, HIV replication is concentrated in B cell follicles, and viral reservoirs such as B cell follicles are a significant barrier to an HIV cure. We developed HIV-specific CAR T cells expressing the follicular homing receptor CXCR5 (CAR/CXCR5 T cells) to target follicular HIV reservoirs. We hypothesized after infusion of CAR/CXCR5 T cells in humanized HIV-infected DRAGA mice, CAR/CXCR5 T cells would accumulate in lymphoid follicles, make direct contact with HIV+ cells, lead to reductions in HIV viral loads, and preserve human CD4 T cells. Methods: Fourteen female humanized DRAGA mice were included in this study. Twelve mice were infected with 10 000 TCID50 of HIV-1 BaL. Levels of HIV-1 plasma viral loads and CD4 T cells were monitored using qRT-PCR and flow cytometry. Two spleens from uninfected mice were used to produce transduced CAR/CXCR5 T cells and transduced cell products (2×105 cells/gram) were infused in six HIV-infected mice. RNAscope combined with immunohistochemistry was used to visualize locations and quantities of CAR/CXCR5 T cells and HIV vRNA+ cells in lymphoid tissues. Results: All mice were HIV-1 detectable nbefore infusion of CAR/CXCR5 T cells. High levels of CAR/CXCR5 T cells and HIV vRNA+ cells were detected at 6 days post-infusion in lymphoid tissues. Many CAR/CXCR5 T cells were found in direct contact with HIV vRNA+ cells. However, many CAR/CXCR5 T cells, presumably CD4+ cells, were HIV vRNA+ and likely spreading infection. No differences in HIV plasma viral loads or CD4 T cell counts were observed between control and treated animals. Conclusions: These studies support the use of the HIV-infected DRAGA mouse model for HIV cure research studies. Using this model, we showed CAR/CXCR5 T cells accumulate in follicle-like structures with HIV vRNA+ cells and come in contact with vRNA+ cells. The simultaneous detection of CAR T cells with high levels of HIV vRNA+ cells indicates the need for HIV-resistant CAR T cells. These preliminary findings demonstrate the HIV-infected DRAGA mouse model is extremely valuable for evaluating HIV cure approaches.
Interleukin 1b Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency

Gastroenterology

2016 Dec 01

Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, Redhu NS, Frei SM, Field M, Doty AL, Goldsmith JD, Bhan AK, Loizides A, Weiss B, Yerushalmi B, Yanagi T, Lui X, Quintana FJ, Muise AM, Klein C, Horwitz BH, Glover SC, Bousvaros A, Sn
PMID: 27693323 | DOI: 10.1053/j.gastro.2016.08.055

Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1β. We demonstrated that innate immune production of IL1β mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1β through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1β. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1β secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.

PP 2.15- 00169 Macrophages are the primary source of virus in semen and male genital tract organs in acutely and chronically infected rhesus macaques

Journal of Virus Eradication

2022 Dec 01

Deleage, C;Fennessey, C;Harper, J;Florea, S;Lipkey, L;Fast, R;Paiardini, M;Lifson, J;Keele, B;
| DOI: 10.1016/j.jve.2022.100170

Background: Most new HIV infections result from sexual interactions with infected but untreated individuals. Semen is the main vector for viral transmission globally, however, little is known regarding the anatomic origin and form of virus in semen. Methods: In this study, we were able to combine numerous new technologies to characterize the virus present in the semen during SIV infection. Six rhesus macaques (RM) were challenged intravenously with barcoded virus SIVmac239M. Semen and blood samples were collected longitudinally for 17 days post-infection with all male genital tract (MGT) and multiple lymphoid tissues collected at necropsy and subjected to quantitative PCR, next generation sequencing of the viral barcode, and tissue analysis (RNAscope, DNAscope and immunophenotyping). Semen was also collected from 6 animals chronically infected with SIVmac251 and in five CD4 depleted animals in acute phase and 2 weeks post ART initiation. Results: Extremely high levels of viral RNA (vRNA) were detected in seminal plasma (up to 10^9cp/ml) as well as comparable levels of cell associated vRNA and vDNA in seminal cells with detection starting as early as 4 days post-infection. RNAscope and immunophenotyping of seminal cells and MGT tissues revealed myeloid cells as the main source of virus (Fig. 1), while CD4+T cells were harboring vRNA in lymphoid tissues. Sequences show evidence of an early compartment between seminal and blood plasma and no difference in the env gene of virus present in semen/MGT and in Lymph Nodes. Finally, multinuclear giant cells harboring vRNA were the only source of virus in semen in chronically infected and in CD4 depleted RM. Moreover, vRNA + myeloid cells were highly present in semen after 2 weeks on ART.
Vaccination with Mycoplasma pneumoniae membrane lipoproteins induces IL-17A driven neutrophilia that mediates Vaccine-Enhanced Disease

NPJ vaccines

2022 Jul 29

Mara, AB;Gavitt, TD;Tulman, ER;Miller, JM;He, W;Reinhardt, EM;Ozyck, RG;Goodridge, ML;Silbart, LK;Szczepanek, SM;Geary, SJ;
PMID: 35906257 | DOI: 10.1038/s41541-022-00513-w

Bacterial lipoproteins are an often-underappreciated class of microbe-associated molecular patterns with potent immunomodulatory activity. We previously reported that vaccination of BALB/c mice with Mycoplasma pneumoniae (Mp) lipid-associated membrane proteins (LAMPs) resulted in lipoprotein-dependent vaccine enhanced disease after challenge with virulent Mp, though the immune responses underpinning this phenomenon remain poorly understood. Herein, we report that lipoprotein-induced VED in a mouse model is associated with elevated inflammatory cytokines TNF-α, IL-1β, IL-6, IL-17A, and KC in lung lavage fluid and with suppurative pneumonia marked by exuberant neutrophilia in the pulmonary parenchyma. Whole-lung-digest flow cytometry and RNAScope analysis identified multiple cellular sources for IL-17A, and the numbers of IL-17A producing cells were increased in LAMPs-vaccinated/Mp-challenged animals compared to controls. Specific IL-17A or neutrophil depletion reduced disease severity in our VED model-indicating that Mp lipoproteins induce VED in an IL-17A-dependent manner and through exuberant neutrophil recruitment. IL-17A neutralization reduced levels of TNF-α, IL-1β, IL-6, and KC, indicating that IL-17A preceded other inflammatory cytokines. Surprisingly, we found that IL-17A neutralization impaired bacterial clearance, while neutrophil depletion improved it-indicating that, while IL-17A appears to confer both maladaptive and protective responses, neutrophils play an entirely maladaptive role in VED. Given that lipoproteins are found in virtually all bacteria, the potential for lipoprotein-mediated maladaptive inflammatory responses should be taken into consideration when developing vaccines against bacterial pathogens.
GABAergic neuronal IL-4R mediates T cell effect on memory

Neuron

2021 Nov 17

Herz, J;Fu, Z;Kim, K;Dykstra, T;Wall, M;Li, H;Salvador, AF;Zou, B;Yan, N;Blackburn, SM;Andrews, PH;Goldman, DH;Papadopoulos, Z;Smirnov, I;Xie, XS;Kipnis, J;
PMID: 34793707 | DOI: 10.1016/j.neuron.2021.10.022

Mechanisms governing how immune cells and their derived molecules impact homeostatic brain function are still poorly understood. Here, we elucidate neuronal mechanisms underlying T cell effects on synaptic function and episodic memory. Depletion of CD4 T cells led to memory deficits and impaired long-term potentiation. Severe combined immune-deficient mice exhibited amnesia, which was reversible by repopulation with T cells from wild-type but not from IL-4-knockout mice. Behaviors impacted by T cells were mediated via IL-4 receptors expressed on neurons. Exploration of snRNA-seq of neurons participating in memory processing provided insights into synaptic organization and plasticity-associated pathways regulated by immune cells. IL-4Rα knockout in inhibitory (but not in excitatory) neurons was sufficient to impair contextual fear memory, and snRNA-seq from these mice pointed to IL-4-driven regulation of synaptic function in promoting memory. These findings provide new insights into complex neuroimmune interactions at the transcriptional and functional levels in neurons under physiological conditions.
T028: Single-cell RNA sequencing reveals the interplay between circulating CD4 T cells, B cells and cancer-associated monocytes in classic Hodgkin lymphoma treated with PD-1 blockade

HemaSphere

2022 Oct 03

Paczkowska, J;Tang, M;Wright, K;Song, L;Shanmugam, V;Luu, K;Welsh, E;Cader, F;Mandato, E;Ouyang, J;Bai, G;Lawton, L;Rodig, S;Liu, X;Shipp, M;
| DOI: 10.1097/01.hs9.0000890680.82329.6b

The most abundant circulating CD3- population in patients with cHL was a newly identified monocyte subset with increased expression of multiple immunosuppressive and tumorigenic cytokines and chemokines, PD-L1 and SIRPa. This newly identified monocytic population was virtually absent from the blood of healthy donors. RNAscope analysis of the intact tumor microenvironment localized these tumor-infiltrating monocytes/macrophages to the immediate proximity of HRS cells. Monocytes from patients whose disease progressed following PD-1 blockade expressed significantly higher levels of immunosuppressive cytokine/chemokine signature which led to the development of a predictive transcriptional assay. We identified a comparable circulating monocyte population and transcriptional signature associated with unresponsiveness to PD-1 blockade in an additional solid tumor underscoring the broad-based significance of these findings.
Central Nervous System Inflammation and Infection During Early, Non-Accelerated Simian-Human Immunodeficiency Virus Infection in Rhesus Macaques.

J Virol.

2018 Mar 21

Hsu DC, Sunyakumthorn P, Wegner M, Schuetz A, Silsorn D, Estes JD, Deleage C, Tomusange K, Lakhashe SK, Ruprecht RM, Lombardini E, Im-Erbsin R, Kuncharin Y, Phuang-Ngern Y, Inthawong D, Chuenarom W, Burke R, Robb ML, Ndhlovu LC, Ananworanich J, Valcour V,
PMID: 29563297 | DOI: 10.1128/JVI.00222-18

Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neuro AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this non-accelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4 T+ cell counts mirrored early HIV infection in humans. At 12 weeks post infection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+, CD4- cellular infiltrate in the brain parenchyma, without a concomitant increase in CD68/CD163+ monocytes, macrophages and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAscope®in situhybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals, but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF may be predominantly mediated by T-cell mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope.IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late stage disease utilizing simian immunodeficiency virus (SIV). In the era of antiretroviral therapy, manifestations of late stage HIV are less common. Furthermore, new interventions such as monoclonal antibodies and therapeutic vaccinations target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with simian-human immunodeficiency virus (SHIV) expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans, and that early neurologic inflammation is characterized by predominantly T cell mediated inflammation, accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end stage disease.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?