ACD can configure probes for the various manual and automated assays for CD34 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Placenta
2016 Mar 30
Wua HH, Choia S, Levitt P.
PMID: - | DOI: 10.1016/j.placenta.2016.03.013
Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues.
Mid-through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc,Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter.
Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1,Ddc, and Maoa in the yolk sac visceral endoderm.
In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration.
Cytometry A.
2017 Nov 30
Mavropoulos A, Allo B, He M, Park E, Majonis D, Ornatsky O.
PMID: 29194963 | DOI: 10.1002/cyto.a.23281
Mass cytometry uniquely enables high-dimensional single-cell analysis of complex populations. This recently developed technology is based on inductively coupled time-of-flight mass spectrometry for multiplex proteomic analysis of more than 40 markers per cell. The ability to characterize the transcriptome is critical for the understanding of disease pathophysiology, medical diagnostics, and drug discovery. Current techniques allowing the in situ detection of transcripts in single cells are limited to a small number of simultaneous targets and are generally tedious and labor-intensive. In this report, we present the development of a multiplex method for targeted RNA detection by combining the mass cytometry and RNAscope™ platforms. This novel assay, called Metal In Situ Hybridization (MISH), includes the hybridization of RNA-specific target probes followed by signal amplification achieved through a cascade of hybridization events, ending with the binding of amplifier-specific detector probes. The detector probes are tagged with isotopically pure metal atoms used for detection by mass cytometry. Proof-of-principle experiments show the simultaneous detection of three mRNA targets in Jurkat cells in suspension cell assay mode. The localization of transcripts was also investigated using the imaging mass cytometry platform in Jurkat and KG-1a cells. In addition, we optimized the antibody staining procedure to allow the co-detection of mRNA and cell surface markers. Our data demonstrate that MISH can be used to complement protein detection by mass cytometry as well as to investigate gene transcription and translation in single cells.
Annals of the rheumatic diseases
2022 Jan 19
Corbera-Bellalta, M;Alba-Rovira, R;Muralidharan, S;Espígol-Frigolé, G;Ríos-Garcés, R;Marco-Hernández, J;Denuc, A;Kamberovic, F;Pérez-Galán, P;Joseph, A;D'Andrea, A;Bondensgaard, K;Cid, MC;Paolini, JF;
PMID: 35045965 | DOI: 10.1136/annrheumdis-2021-220873
Frontiers in cellular and infection microbiology
2021 Jul 06
Liu, F;Han, K;Blair, R;Kenst, K;Qin, Z;Upcin, B;Wörsdörfer, P;Midkiff, CC;Mudd, J;Belyaeva, E;Milligan, NS;Rorison, TD;Wagner, N;Bodem, J;Dölken, L;Aktas, BH;Vander Heide, RS;Yin, XM;Kolls, JK;Roy, CJ;Rappaport, J;Ergün, S;Qin, X;
PMID: 34307198 | DOI: 10.3389/fcimb.2021.701278
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com